首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The dependence of thermoluminescence (TL) of LiF:Mg,Cu,Si on sintering temperatures and dopants concentrations were investigated. The dependency of the TL in LiF:Mg,Cu,Si on sintering temperature exhibits a very sharp maximum at 830 °C. LiF:Mg,Cu,Si is much too sensitive than LiF:Mg,Cu,P to sintering temperature. The glow curve and the TL sensitivity depend on the concentration of Mg, Cu and Si, showing a distinct maximum for certain concentrations of these impurities. Mg seems to be the most essential dopant, as very small changes of the Mg content strongly influence both the glow curve and the TL sensitivity. Si is the main activator responsible for TL emission. The stability to heat treatments in LiF:Mg,Cu,Si was influenced greatly by Mg concentrations. The thermal instability in LiF:Mg,Cu,Si is caused not by Cu and Si but Mg ion state change. It was found that the optimum concentrations are Mg:0.6 mol%, Cu:0.03 mol% and Si:0.9 mol% for this material, which showed the best stability to heat treatment.  相似文献   

2.
The dependence of LiF:Mg,Cu,P samples with various concentrations of Mg on sintering temperatures was investigated to find a new dosimeter. The influence of high sintering temperatures on LiF:Mg,Cu,P chips depends strongly on Mg concentrations. The height of the main peak versus the sintering temperatures exhibits a maximum, the position of which varies between 690 °C and 750 °C, depending on the Mg concentration in the range studied. The high temperature peaks of LiF:Mg,Cu,P for various Mg concentrations reduce basically when the sintering temperature is increased. LiF:Mg,Cu,P is much less sensitive than LiF:Mg,Cu,Si to sintering temperature. LiF:Mg,Cu,P with 0.6 mol% of Mg can be re-used at annealing temperature of 260 °C, regardless of the sintering temperature. It was found that the optimum concentration is Mg: 0.6 mol%, the optimum sintering temperature is 750 °C, considering that LiF:Mg,Cu,P with a low residual signal and good sensitivity can be re-used at annealing temperature of 260 °C and produced in a large scale. The new optimum LiF:Mg,Cu,P formation has 52 times higher than that of the TLD-100, and an extremely low residual signal of 0.07% without an initialization readout procedure.  相似文献   

3.
Thermoluminescence (TL) properties of LiF: Mg, Cu, Si phosphor prepared in multicrystalline form using edge defined film fed growth (EFG) technique has been investigated. The effect of preparation route on TL properties and thermal stability has been studied. To improve the TL dosimetry properties, phosphor is subjected to different annealing temperatures ranging from 250 °C to 450 °C. The shape of the glow curve structure and peak temperature remains similar at different annealing temperatures, however peak intensities vary. The consistency in the glow curve structure with annealing temperature elucidate that TL trapping states are stable in nature. Thermal annealing at 300 °C for 10 min gives maximum TL intensity with main dosimetry peak at 209 °C. The TL intensity of the main dosimetry peak is increased by a factor of five as compared to as-grown crystal. The thermal stability of LiF: Mg, Cu, Si is found to be better than LiF: Mg, Cu, P. Trapping parameters are calculated to have an insight study of defect states. A simple glow curve structure, tissue equivalency, thermal stability, low residual signal, linear response and reusability makes LiF: Mg, Cu, Si a suitable phosphor for radiation therapy, radio diagnostics and personnel dosimetry applications.  相似文献   

4.
The preparation method and some dosimetric properties of the new LiF:Mg,Cu,Si discs are presented. The effect of heat treatments on LiF:Mg,Cu,Si was investigated. The shape of the glow curve for LiF:Mg,Cu,Si is similar to that for standard LiF:Mg,Cu,P (GR-200A), and shows minimal differences when annealed in the range from 260 °C to 290 °C for 10 min. The TL sensitivity for LiF:Mg,Cu,Si is much lower than that for GR-200A, but is 35 times larger than that for TLD-100 and is slightly higher than that for HMCP. The height of the high-temperature peaks for LiF:Mg,Cu,Si is not only lower than that for GR-200A, but also lower than that for HMCP. The glow curve shape of LiF:Mg,Cu,Si annealed at 260 °C for different times shows minimal differences and TL response remains stable. These results indicate that the new LiF:Mg,Cu,Si disc has a good stability to thermal treatments and a lower residual TL signal.  相似文献   

5.
Li_2B_4O_7 (LBO):Cu,Ag,Mg phosphors have been prepared by the sintering technique. The roles of the Ag and Mg dopants in the phosphors have been studied using the methods of thermoluminescence (TL) glow curves and TL 3D spectra. The results indicated that proper concentrations of Ag and Mg can enhance the TL of LBO:Cu. It was also indicated that the intensity of TL peak at ~130℃ is reduced with the in- creasing Ag concentration, and enhanced with the increasing Mg concentration. From the TL 3D spectra, three emission bands (λ1 = 421 nm, λ2 = 380 nm, λ3 = 350 nm) were observed: the intensity of low energy emission band is reduced and that of the high energy is enhanced with the increasing dopant Ag; on the contrary, the intensity of low energy emission band is enhanced and that of the high energy one is reduced with the increasing dopant Mg.  相似文献   

6.
The dose response of the TL emission spectra of an LiF:Mg,Ti (TLD-100) sample and three LiF:Mg,Ti samples with different impurity concentrations (0–6 ppm Ti and 80–100 ppm Mg) have been measured. At a dose less than 22 Gy the emission spectrum of the TLD-100 sample comprises one emission band at 420 nm. The sample without Ti shows also one emission band but now at 620 nm. The spectra of the other two samples comprises two emission bands at 420 nm and 620 nm of which the intensity of the 420 nm band increases with increasing Ti concentration. The dose response of the glow peaks is different for peaks at different temperatures and emission bands. From these observations it can be concluded than in LiF:Mg,Ti at least some of the traps and luminescent centers are coupled.  相似文献   

7.
Several thermal treatments in the temperature range from 270 °C to 320 °C (each of 10 min) were tested as a final preparation procedure of LiF:Mg,Cu,Si to improve the protocol of TL readout with less residual signal for the LiF:Mg,Cu,Si TLD. This high sensitivity LiF:Mg,Cu,Si TLD exhibited thermal stability much better than that of the well known LiF:Mg,Cu,P. For LiF:Mg,Cu,Si, a readout temperature up to 300 °C did not affect the TL sensitivity and glow curve structure for 12 cycles of exposure and readout following an initial thermal treatment at 295 °C for 10 min. The residual TL signal also remained negligible.  相似文献   

8.
The influence of various annealing treatments with heating temperatures (TA) from 240 to 700 °C, with re-annealing at 240 °C, and with a combined re-annealing procedure of 20 min at 270 °C followed by 10 min at 240 °C on LiF:Mg,Cu,P (GR-200A) was investigated. As the TA increased, the intensity decreased rapidly to almost no signal at 340–380 °C then increased clearly and achieved a maximum at 540 °C. The position of the maximum intensity of the glow curve shifted basically in the direction of higher temperatures with an increase at TA and achieved a maximum of 279 °C when annealed at 460 °C. The re-annealing influenced both the intensity and the glow curve structure at certain degree. The effect of re-annealing on the glow curve depended markedly on the TA. With re-annealing at 240 °C, the intensity decreased as TA increased up to 360 °C then increased and achieved a maximum at 540 °C. The intensity could be restored fully when annealed at above 500 °C, however, the glow curve couldn't be restored fully. With a combined annealing, the shape of glow curve of a sample annealed at above 540 °C or below 320 °C was similar to that of the standard glow curve of LiF:Mg,Cu,P and the intensity and glow curve could be restored completely when annealed in the range 620–660 °C. It seems that the main roles of the re-annealing at 240 °C are to restore partially the intensity of peak 4 and peak shape for LiF:Mg,Cu,P when annealed at above 260 °C, and restore fully the total TL intensity of LiF:Mg,Cu,P when annealed at above 500 °C and the main roles of the combined re-annealing are to reduce the intensity of peak 5 and the total TL intensity, increase the intensity of peak 4 and restore the glow curve shape.  相似文献   

9.
The TL glow curve of X-ray irradiated pure and Cu-doped Li2B4O7 shows that the most intense TL peak is at 160°C. In the present work the characteristics of the TL and PTTL glow curves from gamma irradiated pure Li2B4O7 single crystal samples (prepared by Mitui Kinzoku Kougyo, Japan) have been studied. The samples were irradiated with different gamma doses (from 0.5 up to 500 Gy) using a 60Co gamma ray source at a dose rate of 78 Gy h−1. The TL glow curve shows three intense peaks (at 160°C, 260 and 305°C) and three weak ones (at 110, 140 and 220°C). The most intense TL peak is at 160°C, which agrees with the TL glow curve from X-ray irradiated samples [Kutomi Y. and Tomita A. (1990) TSEE and TL of Li2B4O7:Cu single crystals. Radiat. Prot. Dosim. 33, 347–350]. The 305°C peak in gamma irradiated samples also appears to be very intense, which indicates its possible use in high-dose high-temperature dosimetry. Further, the characteristics of the PTTL glow curve have been studied as a function of ultraviolet exposure and number of repeated PTTL cycles.  相似文献   

10.
LiF crystal doped with magnesium (Mg), copper (Cu) and phosphorous (P) was grown in the form of multicrystalline sheet using Edge-defined film-fed growth (EFG) technique for dosimetry application. These crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. Dosimetry peak was observed at 210 °C for as-grown crystal. As reported earlier LiF:Mg, Cu, P is a highly sensitive material but losses its sensitivity if annealed at temperature above 240 °C. In this paper, the effect of annealing temperature on thermoluminescence glow-curve structure, maximum peak temperature, peak height and integrated area of the glow peak of EFG grown samples was investigated in detail. Annealing temperature range from 220 °C to 500 °C was considered for the study. Experimental results of the obtained glow curve show that with increase in annealing temperature, glow peak shift towards higher temperature region with substantial increase in TL intensity. Annealing at 500 °C for 10 min gave maximum TL intensity with main dosimetry peak positioned at 233 °C. Change in the defect structure with different pre-annealing temperature was analysed using trapping parameters.  相似文献   

11.
The widely known LiF TL detectors: LiF:Mg,Ti (MTS-N) and LiF:Mg,Cu,P (MCP-N), were investigated with respect to their OSL properties. It was found that both materials exhibit quite substantial OSL sensitivity. In particular, in the case of LiF:Mg,Cu,P this sensitivity was very high, significantly exceeding that of BeO, the standard OSL dosimetric material. LiF:Mg,Cu,P could be a very promising candidate for application in dosimetry, if not for the fading, which was found to be quite high, reaching nearly 80% loss of the signal within 60 h. The OSL signal intensity shows a correlation with the peak 2 of the TL glow curves indicating that the same trapping sites are responsible for both processes. Peak 2 of LiF:Mg,Ti shows a peculiar property, that blue light stimulation removes only about half of its initial intensity, disregarding the duration of stimulation. This suggests, that this peak may have a composite structure and originates from both light-sensitive and light-insensitive trapping centres.  相似文献   

12.
Newly developed LiF:Mg,Cu,Si was found to exhibit no significant fading on room temperature post-irradiation storage up to several months. In view of the wide variation in the reported data of fading of LiF:Mg,Cu,P exhibiting glow curve structure similar to that of LiF:Mg,Cu,Si, a study of the effect of post-irradiation storage and thermal treatments on the deconvoluted glow peaks of LiF:Mg,Cu,Si was undertaken. The decay of inseparable peak-3 by post-irradiation storage or thermal treatments did not indicate any rearrangement in the trap occupation that would affect the response of the main peak (peak-4). A post-irradiation treatment at 125 °C for 10 min was found to be the optimum to eliminate the lower temperature peaks.  相似文献   

13.
Li2B4O7 (LBO)Cu,Ag,Mg phosphors have been prepared by the sintering technique.The roles of the Ag and Mg dopants in the phosphors have been studied using the methods of thermoluminescence (TL) glow curves and TL 3D spectra. The results indicated that proper concentrations of Ag and Mg can enhance the TL of LBOCu.It was also indicated that the intensity of TL peak at ~130℃ is reduced with the increasing Ag concentration, and enhanced with the increasing Mg concentration.From the TL 3D spectra, three emission bands (λ1 = 421 nm,λ2 = 380 nm, λ3 = 350nm) were observed the intensity of low energy emission band is reduced and that of the high energy is enhanced with the increasing dopant Ag; on the contrary, the intensity of low energy emission band is enhanced and that of the high energy one is reduced with the increasing dopant Mg.  相似文献   

14.
Efforts are aimed at finding a method that could serve TL dosimetric measurements in the range of low-dose but carried out in an environment with elevated temperature. The temperature at the position of the maximum intensity of LiF:Mg,Cu,P was about 280 °C when annealed at 460 °C. LiF:Mg,Cu,P with a maximum intensity at 280 °C should present good thermal stability. The TL intensity of LiF:Mg,Cu,P with a maximum intensity at 280 °C was about 54% of the standard LiF:Mg,Cu,P, it should have a minimum measurable dose in the range of micro-Gy. LiF:Mg,Cu,P with a maximum intensity at 280 °C could be re-used by the 660 °C/30 min annealing, followed by 270 °C/20 min, 240 °C/10 min and 460 °C/30 min. It's possible for LiF:Mg,Cu,P to be extended application for low dose test in an environment with elevated temperature.  相似文献   

15.
Thermoluminescence (TL) glow curves of LiF:Mg,Cu,Si were deconvoluted with the introduction of enhanced physical model which envisages that both electrons and holes, produced by ionization radiation and trapped at the respective traps, can be thermally released into the conduction and the valence band, respectively and the holes may also radiatively recombine with electrons at the electron recombination centers. The model is more generalized than the ordinary trap interaction model which only permits the traffic of electrons through the conduction band. An effective numerical analysis method was developed to calculate the glow curve to be compatible with the measured curves. The validity of the numerical method was verified through artificially generated TL glow curves for a wide range of trap parameters. In order to identify TL kinetics of LiF:Mg,Cu,Si with higher accuracy, its glow curves were deconvoluted for two more generalized models, namely, the Schön–Klasens model and the Chen–Pagonis–Lawless model as well as the ordinary trap interactive model. The parameters in the more generalized multi-trap multi-recombination center (MTMR) model were found to be consistent with the quasi-static approximation(QSA) method.  相似文献   

16.
We have studied the behavior of the glow peaks in the thermoluminescence of LiF:Mg,Cu,P as a function of pre-irradiation annealing temperature in the range 80 to 170°C, and as a function of cooling rate following the 240°C/10 min anneal used for standardization in dosimetric procedures. The intensities of the major peaks in LiF:Mg,Cu,P (as well as in LiF:Mg,Ti—the current industrial standard) seem to be determined by the dynamics of clustering of (Mg2+−Livac) dipoles to dimers, trimers and a precipitate phase. The intensities of the thermal interactions, however, seem to be somewhat reduced in LiF:Mg,Cu,P compared to LiF:Mg,Ti. In addition, it seems plausible that phosphorus takes the role of titanium in LiF:Mg,Cu,P in the formation of a trapping center/recombination center spatially correlated complex.  相似文献   

17.
The badge system of personal thermoluminescence (TL) dosimeter for photon fields using LiF:Mg,Cu,Na,Si TL material, which was developed by Korea Atomic Energy Research Institute (KAERI) a few years ago, was developed by taking advantage of its dosimetric properties including energy dependencies. A badge filter system was designed by practical irradiation experiments supported by computational modeling using Monte Carlo simulation. Design properties and dosimetric characteristics such as photon energy response and angular dependence of new TL dosimeter system examined through the irradiation experiments are presented. Based on the experiments for the developed dosimeter, it is demonstrated that the deep dose response of dosimeter provided the value between 0.78 and 1.08, which is within the design limit by ISO standard. This multi-element TL dosimeter badge system allows the discrimination of the incident radiation type between photon and beta by using the ratios of the four TL detectors. Personal TL dosimeter using sintered LiF:Mg,Cu,Na,Si TL detectors has the ability to measure a personal dose equivalent Hp(d) for a wide range of photon energies.  相似文献   

18.
This paper presents results obtained for a new LiF:Mg,Cu,P (HMCP) preparation with modified Mg and Cu concentrations. The shape of the HMCP glow curve shows minimal differences for annealing in the range from 523 to 543 K for 10 min. The thermoluminescence (TL) readout value remained stable when annealed in the range from 513 to 543 K for 10 min. The new formula allows heating of the material to higher temperatures than that originally employed for the well-known GR-200A dosemeter, practically without losses in sensitivity. The TL sensitivity is approximately half of that for the GR-200A, and still 29-fold greater than that for the TLD-100 dosemeter, and the residual signal is approximately five-fold lower than for the GR-200A. These results indicate that the new TL material shows enhanced thermal stability and a lower residual TL signal at a small TL sensitivity cost. The heat treatment temperatures are related to concentrations of Mg and Cu in LiF:Mg,Cu,P.  相似文献   

19.
The spectrum of the light emitted during thermoluminescence from irradiated LiF(Mg,Cu,P) has been measured for samples with different Cu and P contents. The results show no essential differences in glow curve structure and emission spectrum for MCP materials with different dopant contents and produced with different production techniques, except for samples with a low phosphorus concentration. The emission spectrum consits of two bands with maxima at 350 and 384 nm; the latter is dominant in the main glow peak and the former becomes more important at higher temperatures. Both bands are correlated with phosphorus, which appears to play a vital role in the overall sensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号