首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
万灵子  王晗 《化学通报》2019,82(11):963-971
环丙基的化学结构不同于直链脂肪烃和其他多元脂肪环,在药物分子的设计中经常被使用,具有增强药物的药效、增强代谢稳定性、降低脱靶作用、增强对受体的亲和力、限制多肽的水解作用、增加血脑屏障渗透率、降低血浆清除率以及改善药物的解离度(pK_a)等功效。含有环丙基结构的药物被开发用于治疗呼吸系统疾病、精神障碍类疾病、内分泌和代谢系统疾病、感染性疾病、神经系统疾病、心脑血管疾病以及肿瘤等。本文将对含有环丙基结构药物的研究进展进行综述。  相似文献   

2.
以氰基乙酸乙酯为起始原料,在强碱作用下与溴丙烷经两次烷基化反应制得2-氰基-2-丙基-戊酸乙酯(3);3中氰基经镍催化还原为氨基得2-氨甲基-2-丙基-戊酸乙酯(4);4经水解反应合成了2,2-二丙基-β-丙氨酸,总收率37.4%,其结构经1H NMR确证。  相似文献   

3.
环己烷类液晶因具有高度的稳定性,较宽的相列相温区而受到人们的青睐。反-4-(反-4’-正丙基环己基)环己醇(trans-3HHE)是一种合成环己烷类液晶的重要中间体,它可通过酶选择性催化和顺式构型异构化二种方法合成。文献报道顺式构型异构化法是:4-(反-4’-正丙基环己基)苯酚以铑/碳或铑/氧化铝为催化剂,在酸性介质条件下进行加氢反应,  相似文献   

4.
刚性-柔性体系中刚柔链段间的择优取向竞争使其很容易通过自组装形成如球形、棒状、囊泡等多种形态的纳米有序结构,因此该体系的研究引起了人们广泛的关注。本文对各种不同类型的刚性-柔性体系及制备过程进行了介绍与总结,详尽总结了刚性-柔性体系在各种溶液中的不同自组装行为和相应机理,并对近年发展较为迅猛的超分子刚性-柔性复合物体系进行了重点论述。最后,对刚性-柔性体系自组装研究中存在的问题和发展前景进行了展望。  相似文献   

5.
运用铜催化的叠氮-炔基Husigen-Click环加成反应,首先设计合成了具有环糊精与三联吡啶基团的化合物A,使其同时具有了主客体识别位点和金属—离子配位位点,接着合成了具有烷基链的偶氮苯衍生物B,通过自组装,化合物A与B形成超分子聚集体.在A与B物质的量之比为1∶1时,其在H2O与四氢呋喃(THF)混合溶剂中可自组装形成具有双层膜结构的囊泡,并观察了囊泡在室温下的稳定性.可以通过调节紫外/可见光照控制该囊泡体系的结构,通过加入Fe2+使囊泡解组装.此外,我们通过Job's曲线证明A与B进行了1∶1包合,通过紫外滴定法表明加入Fe2+后的体系中,A与Fe2+离子的配位比为2∶1.  相似文献   

6.
环糊精(CD)是具有特殊的空腔、良好的稳定性并且可以区域选择性修饰的一类主体分子。近年来发现CD及其衍生物自组装形成的CD超分子体系——囊泡兼具囊泡和CD的生物模拟、分子识别和生物相容等优良特性。本文综述了CD及其衍生物囊泡的制备,同时还介绍了其在新型智能材料、药物输送和细胞模拟领域中的最新研究进展,并结合现阶段的研究状况,对该类囊泡体系的发展前景进行了展望。  相似文献   

7.
用八甲基环四硅氧烷(D4)与N,N-二甲基-γ-氨丙基-γ-氨丙基二甲氧基硅烷等进行聚合反应,合成了一种N,N-二甲基-γ-氨丙基-γ-氨丙基聚二甲基硅氧烷(ASO-121)柔软剂,用红外光谱、核磁共振氢谱、原子力显微镜等仪器对其结构和成膜形态进行了研究。结果表明,ASO-121能在棉纤维织物和单晶硅表面形成疏水膜,该膜表面略显粗糙,在2μm^2扫描范围内其均方根粗糙度达到了0.226nm。  相似文献   

8.
以物理力将糖脂引入聚联乙炴基质脂的变色囊泡   总被引:1,自引:0,他引:1  
囊泡具有与生物膜结构类似的封闭双分子层结构,具有模拟生物膜结构的突出优点,因此受到人们的极大重视.因为它具有胶体粒子的大小尺寸,其表面膜的性质易于控制,具有较大的输送客最以及生物相容性,因此,囊泡在药物的传输、基因治疗、癌症的化学治疗、分子识别、分子光学器件的组装、超细颗粒的制备、太阳能转化及反应性能的控制等领域都具有十分重要的意义.然而,在分子识别及药物输送过程中,由丁蟹池的稳定性差而严重影响其应用.聚合表面活性剂囊泡的出现较好地解决了其稳定性差的问题.在众多的可聚合的表面活性剂单体中,具有联…  相似文献   

9.
胆固醇对卵磷脂囊泡稳定性的影响   总被引:1,自引:0,他引:1  
采用透射电子显微镜研究了Gemini表面活性剂诱导卵磷脂囊泡结构改变的机理, 用Langmuir膜天平研究卵磷脂和胆固醇的不溶单分子混合膜在气-液界面的行为和混合膜分子间的相互作用, 并结合动态光散射技术和停留法探讨胆固醇对Gemini表面活性剂诱导卵磷脂囊泡结构改变的影响. 从电镜结果可以推测带正电荷的Gemini表面活性剂分子会嵌入到带负电荷的卵磷脂囊泡双分子层的外层, 囊泡的双分子层之间的相互吸引力使双分子层的厚度减少, 由于嵌入的表面活性剂分子在囊泡的双分子层中分布是不均匀的, 这种分布的不均匀性必然会导致双分子层厚度的不均匀, 从而使囊泡破裂. 混合膜的过剩面积和动力学结果表明, 胆固醇和卵磷脂是相互吸引的, 即胆固醇的加入使卵磷脂囊泡更不容易被表面活性剂破坏.  相似文献   

10.
采用自洽平均场方法模拟了脂质体-纳米粒与巨型囊泡的相互作用.在初始状态,脂质体-纳米粒与巨型囊泡之间有一定距离,随着距离的变化,脂质体-纳米粒与囊泡发生相互作用,最终脂质体小囊泡和巨型囊泡会融合并使粒子释放.随着囊泡的磷脂分子组分的变化,体系呈现出丰富的结构变化.磷脂头体积分数较大时体系形成融合通道(stalk相)或半融合隔膜(HD相)以及融合小孔;磷脂头体积分数较小时体系出现囊泡的渗漏形成亲水聚集体(棒状HII相或IMI相)和融合小孔.改变了所包裹的纳米粒半径,发现对体系的结构影响不大.我们定量的计算了各个体系的自由能,从自由能分析可知,随着距离的减小,脂质体-纳米粒与巨型囊泡相互作用的过程是一个自发过程.在相互作用过程中,新结构的形成需要克服能量壁垒,且能量壁垒随着磷脂头体积分数和纳米粒半径的增大都会有一定程度的增加.  相似文献   

11.
Surface pressure-area isotherm, neutron specular reflection, and small-angle neutron scattering studies have been carried out to determine the effects of added cholesterol and distearoylphosphatidylcholine (DSPC), on the molecular structures of monolayers and vesicles containing the dialkyl polyoxyethylene ether surfactant, 1,2-di-O-octadecyl-rac-glyceryl-3-(alpha-dodecaethylene glycol) (2C18E12). Previous neutron reflectivity studies on 2C18E12 monolayers at the air/water interface have shown them to possess a thickness of approximately 24 angstoms and highly disordered structure with significant intermixing of the polymer headgroups and alkyl chains. SANS studies of 2C18E12 vesicles gave a bilayer thickness of approximately 51 angstroms. Addition of cholesterol to 2C18E12 monolayers (1:1 molar ratio), produced a marked condensing effect coupled with an increased the layer thickness of approximately 7 angstroms, and in vesicles, increased bilayer thickness by approximately 16 angstroms. Monolayers consisting of 2C18E12:DSPC:cholesterol (1:1:2 molar ratio), showed a layer thickness of approximately 31 angstroms, whereas in vesicles, three-component bilayer was found to be only approximately 9 angstroms thicker than those possessed by vesicles composed solely of 2C18E12. Mixing between the molecules in three-component monolayers was shown to be ideal through analysis of the neutron reflectivity data. These findings are discussed in relation to increased ordering and decreased headgroup/hydrophobe intermixing within both monolayers and vesicle bilayers containing 2C18E12. The inferred increase in molecular order within vesicles composed of 2C18E12 with additional cholesterol and phospholipid is used as a model for explaining theoretical differences in bilayer permeability.  相似文献   

12.
合成了系列单链含2,7-取代萘刚性生色基的双亲化合物CnNaph(2,7)C6N+(n=4,7,10,12,16),分别用透射电镜、1HNMR和DSC观测了该系列双亲物在稀溶液中的聚集形态,研究了聚集体内的分子运动和凝胶态到液晶态的相变.结果表明,当尾链n≥7时,该系列化合物在稀溶液中自组织成双分子层排列的囊泡,当n=4时聚集体无确定形态.  相似文献   

13.
A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of alpha-, beta-, and gamma-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicles in aqueous solution. The bilayer vesicles were characterized by transmission electron microscopy, dynamic light scattering, dye encapsulation, and capillary electrophoresis. The molecular packing of the amphiphilic cyclodextrins was investigated by using small-angle X-ray diffraction of bilayers deposited on glass and pressure-area isotherms obtained from Langmuir monolayers on the air-water interface. The bilayer thickness is dependent on the chain length, whereas the average molecular surface area scales with the cyclodextrin ring size. The alkyl chains of the cyclodextrins in the bilayer are deeply interdigitated. Molecular recognition of a hydrophobic anion (adamantane carboxylate) by the cyclodextrin vesicles was investigated by using capillary electrophoresis, thereby exploiting the increase in electrophoretic mobility that occurs when the hydrophobic anions bind to the nonionic cyclodextrin vesicles. It was found that in spite of the presence of oligo(ethylene glycol) substituents, the beta-cyclodextrin vesicles retain their characteristic affinity for adamantane carboxylate (association constant K(a)=7.1 x 10(3) M(-1)), whereas gamma-cyclodextrin vesicles have less affinity (K(a)=3.2 x 10(3) M(-1)), and alpha-cyclodextrin or non-cyclodextrin, nonionic vesicles have very little affinity (K(a) approximately 100 M(-1)). Specific binding of the adamantane carboxylate to beta-cyclodextrin vesicles was also evident in competition experiments with beta-cyclodextrin in solution. Hence, the cyclodextrin vesicles can function as host bilayer membranes that recognize small guest molecules by specific noncovalent interaction.  相似文献   

14.
Thermodynamic properties of aqueous solutions of newly synthesized compounds, namely, N-[2-(beta-D-glucopyranosyl)ethyl]-N,N-dimethyl-N-alkylammonium bromides with hydrophobic tails of 12 (C12DGCB) and 16 (C16DGCB) carbon atoms, determined as a function of concentration by means of direct methods, are reported here. Dilution enthalpies, densities, and sound velocities were measured at 298 K, allowing for the determination of apparent and partial molar enthalpies, volumes, and compressibilities. Changes in thermodynamic quantities upon micellization were derived using a pseudophase-transition approach. From a comparison with the corresponding acetylated compounds N-[2-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)ethyl]-N,N-dimethyl-N-dodecylammonium bromide (C12AGCB) and N-[2-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyanosyl)ethyl]-N,N-dimethyl-N-hexadecylammonium bromide (C16AGCB), the role played in the micellization process by the acetylated glycosyl moiety was inferred: it enhances the hydrophobic character of the molecule and lowers the change in enthalpy of micelle formation by about 1.5 kJ mol(-1). By comparing the volume of C12DGCB with those of DEDAB and DTAB, the volumes taken up by the (beta- d-glucopyranosyl)ethyl and beta- d-glucopyranosyl groups were found to be 133 and 99 cm3 mol(-1), respectively. Regarding the interaction with DPPC membranes, it seems that the sugar moiety of the hexadecyl deacetylated compound gives rise to hydrogen bonds with the oxygen atoms of the lipid phosphates, shifting the phase transition of DPPC from a bilayer gel to a bilayer liquid crystal to lower temperatures. C16AGCB induces significantly greater changes than C16DGCB in the structure of liposomes, suggesting the formation of domains. The interaction is strongly enhanced by the presence of water. Neither compound interacts strongly with DNA or compacts it, as shown by EMSA assays and AFM images. Only C16AGCB is able to deliver little DNA inside cells when coformulated with DOPE, as shown by the transient transfection assay. This might be related to the ability of C16AGCB to form surfactant-rich domains in the lipid structure.  相似文献   

15.
The fluorescence resonance energy transfer (FRET) in a lipid bilayer system containing two different donors and one common acceptor at below and above transition temperature has been studied and all the FRET parameters are analyzed using steady state and time-resolved fluorescence spectroscopy. Using dynamic light scattering measurement, we have followed the process of preparation of small unilamellar vesicles, and by following the FRET parameters of C-153-Rh6G and C-151-Rh6G pairs inside SUVs at 16 °C and 33 °C (T(m) = 23.9 °C) we have noticed that there is greater effect of temperature on the FRET parameters in case of the C-153-Rh6G pair than that of the C-151-Rh6G pair. Finally we have concluded that this difference is due to their different location inside the lipid bilayer in which fluidity of the long alkyl chain markedly affects the FRET parameters for C-153-Rh6G pair embedded inside a small unilamellar vesicle of size 20-50 nm.  相似文献   

16.
Mn-Anderson-C6 and Mn-Anderson-C16, A type of inorganic-organic hybrid molecules containing a large anionic polyoxometalate (POM) cluster and two C6 and C16 alkyl chains, respectively, demonstrate amphiphilic surfactant behavior in the mixed solvents of acetonitrile and water. The amphiphilic hybrid molecules can slowly assemble into membrane-like vesicles by using the POM clusters as polar head groups, as studied by laser light scattering and TEM techniques. The hollow vesicles have a typical bilayer structure with the hydrophilic Mn-Anderson cluster facing outside and long hydrophobic alkyl chains staying inside to form the solvent-phobic layer. Due to the rigidity of the POM polar heads, the two alkyl tails have to bend significantly for the vesicle formation, which makes the vesicle formation more difficult compared to some conventional surfactants. This is the first example of using hydrophilic POM macroions as polar head groups for a surfactant system.  相似文献   

17.
合成了一系列含磁性反离子的非对称双疏水链长的阳离子表面活性剂,其中三氯一溴铁合十六烷基戊基二甲基铵(C_(16)C_5DMA~+[FeCl_3Br]-~)与偶氮羧酸钠盐(AzoNa_4)在酸性条件水溶液中形成磁性囊泡凝胶。运用cryo-透射电镜(TEM)、冷冻蚀刻TEM(FF-TEM)、流变仪、傅里叶变换红外光谱(FT-IR)和超导量子干涉(SQUID)等表征技术对囊泡凝胶进行了结构和性质研究,结果发现:凝胶含有曲率多变的融合性的双层囊泡,这些双分子层结构模构了自然界中各种物象的结构轮廓,展现了不可预测的多变曲率和良好柔性。聚集体双分子层膜内由长短不对称烷基链采取交错相扣的双分子层排列模式,这种构建模式结构稳定,短烷基链可游离出囊泡双分子层并伸向外部水相介质。两个相邻囊泡间的短链在疏水相互作用下形成非共价的囊泡"补丁",疏水的囊泡"补丁"克服相邻囊泡之间的斥力而融合。磁性反离子[FeCl_3Br]~-不仅赋予囊泡磁性,且在囊泡的形成过程中调控烷基链的组装。这种多形态融合性囊泡为揭示膜曲率的调节机制和构建人工细胞提供实验数据和理论参考。  相似文献   

18.
A series of artificial cyclic lipids that mimic archaeal membrane ones has been synthesized. The structural features of these molecules include a longer cyclic framework, in which the alkyl chain length ranges from 24 to 32 in carbon number, which is longer than our first analogous molecule with 20-carbon long alkyl chains [K. Miyawaki, T. Takagi, M. Shibakami, Synlett 8 (2002) 1326]. Microscopic observation reveals that these molecules have a self-assembling ability: hydration of the lipids yields multilamellar vesicles in aqueous solution and monolayer sheets on solid supports. High-sensitivity differential scanning calorimetry (24- and 28-carbon alkyl chain lipids) indicates that (i) the alkyl chain length affects their phase behavior and (ii) the enthalpies of endothermic peaks accompanied by phase transition were considerably lower than those of their monomeric phospholipid analogs. Fluorescence polarization measurements suggest that the membranes made from the 24-carbon alkyl chain lipid have a higher polarization factor than membranes composed of DMPC and DMPC plus cholesterol. These findings imply that the cyclic lipids containing 24- and 28-carbon alkyl chain construct well-organized monolayer membranes and, in particular, that the molecular order of the 24-carbon alkyl chain lipid is higher than that of bilayer membranes in the liquid-ordered phase.  相似文献   

19.
Encapsulation efficiencies of vesicles formed by the nonionic surfactant 1,2-dioctadecyl-rac-glycerol-3-omega-methoxydodecylethylene glycol (abbreviated as 2C18E12) and its phospholipid counterpart, distearoylphosphatidylcholine (DSPC) at 298 K, were determined by the entrapment of the water-soluble dye, carboxyfluorescein (CF) to be 0.045+/-0.001 and 0.03+/-0.04 L mol(-1) for 2C18E12 vesicles prepared using low osmolarity (270 m Osm) Krebs-Henseleit (K-H) buffer and a modified 'high salt' (1600 m Osm) variant of K-H buffer, respectively, and 0.64+/-0.01 and 0.31+/-0.04 Lmol(-1) for DSPC vesicles prepared under the same conditions and in the same buffers. Freeze fracture electron microscopy studies confirmed the presence of vesicles when 2C18E12 and DSPC were dispersed in water and both buffer solutions. Small angle neutron scattering (SANS) studies, using D2O in place of H2O, showed that when 2C18E12 vesicles were prepared in the 'high salt' variant of K-H buffer as opposed to K-H buffer or water, a higher proportion of multilamellar vesicles (MLV) were formed. Furthermore when prepared in the 'high salt' variant of K-H buffer, the 2C18E12 bilayers were thinner, and when present in the form of MLV exhibited a smaller layer of water separating the bilayers. However, even in the absence of electrolyte, 2C18E12 formed surprisingly thin bilayers due to the penetration of the polyoxyethylene chains into the hydrophobic chain region of the bilayer. Due to the dehydrating effect of the high concentration of electrolyte present in the 'high salt' variant of K-H, the polyoxyethylene head groups penetrated further into the hydrophobic region of the bilayer making the bilayer even thinner. In the case of the DSPC vesicles, although the SANS study showed an increase in the relative proportion of multilamellar to unilamellar vesicles when samples were prepared in the 'high salt' variant of K-H buffer, no differences were observed in the thickness and the d-spacing of the vesicle bilayers. Variable temperature turbidity measurements of 2C18E12, and DSPC vesicles prepared in water indicated phase changes at 320+/-0.5 and 327+/-0.5 K, respectively, and were unchanged when the 'high salt' variant of K-H buffer was used as hydrating medium. Taken together, these results suggest that a low phase transition temperature was not the reason for the poor entrapment efficiency of 2C18E12 vesicles but rather the very 'thin' hydrophobic barrier formed by the penetration of the polyoxyethylene chains into the hydrophobic region of the bilayer.  相似文献   

20.
We report on the fluorescence lifetime and anisotropy decay dynamics of the tethered chromophore NBD in unilamellar vesicles comprised of phosphoglycerol and phosphocholine lipids with C(12) and C(18) saturated acyl chains, with or without cholesterol and/or sphingomyelin. For the phosphocholine vesicles, we use the chromophore 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and for the phosphoglycerol vesicles, we use the chromophore 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (NBD-PG). The addition of cholesterol and/or sphingomyelin to the PC vesicles restricts the chromophore environment, in agreement with the known rigidizing effect of cholesterol on PC membranes. The PG systems do not exhibit an analogous effect with the addition of cholesterol and/or sphingomyelin. The motional freedom of the NBD chromophore is, in general, more restricted in the PC bilayers than it is in the PG bilayers, and we understand this behavior in the context of the role of the lipid headgroups in mediating bilayer organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号