首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, 4-carboxylphenyl-thiorhodanine (CPTR) was synthesized. A new method for the simultaneous determination of palladium, platinum, and rhodium ions as metal-CPTR chelates was developed using rapid column high-performance liquid chromatography equipped with an online enrichment capability. Palladium, platinum, and rhodium ions were precolumn-derivatized with CPTR to form colored chelates. The Pd-CPTR, Pt-CPTR, and Rh-CPTR chelates can absorbed onto the front of the enrichment column (ZORBAX Stable Bound, 4.6 × 10 mm, 1.8 μm) when they are injected with a buffer solution of 0.05 M sodium acetate-acetic acid (pH 3.5) as mobile phase. After the enrichment had finished, by switching the six-port switching valve, the retained chelates were back-flushed by mobile phase and moved towards the analytical column. The chelate separation on the analytical column (ZORBAX Stable Bound, 4.6 × 50 mm, 1.8 μm) was achieved with 46% acetonitrile (containing 0.05 M of pH 3.5 sodium acetate-acetic acid buffer and 0.01 M tritonX-100) as mobile phase. The palladium, platinum, and rhodium were separated completely within 2 min. The detection limits (S/N = 3) of palladium, platinum, and rhodium are 1.4, 1.6, and 2.0 ng/L, respectively. The method was applied to the determination of palladium, platinum, and rhodium in water, urine, and soil samples with good results. The text was submitted by the authors in English.  相似文献   

2.
《Analytical letters》2012,45(14):2463-2474
Abstract

In this paper, 2‐carboxyl‐1‐naphthalthiorhodamine (CNTR) was synthesized, and a new method for the simultaneous determination of palladium, platinum, and rhodium ions as metal‐CNTR chelates was developed using rapid column high performance liquid chromatography combined with on‐line enrichment. The palladium, platinum, and rhodium ions were precolumn derivatized with CNTR to form colored chelates. The Pb‐CNTR, Pt‐CNTR, and Rh‐CNTR chelates could be absorbed onto the front of the enrichment column when they were injected into the injector and sent to the enrichment column (ZORBAX Stable Bound, 4.6×10 mm, 1.8 µm) with a buffer solution of 0.05 mol/L sodium acetate–acetic acid buffer solution (pH 3.5) as mobile phase. After enrichment, and by switching the six ports switching valve, the retained chelates were back‐flushed by mobile phase and traveling towards the analytical column. The separation of these chelates on the analytical column (ZORBAX Stable Bound, 4.6×50 mm, 1.8 µm) was satisfactory with 54% methanol (v/v) in 0.05 mol/L sodium acetate buffer (pH 3.5) containing 1 g/L Triton X‐100 as mobile phase. Palladium, platinum, and rhodium were separated completely within 2 min. The detection limits (S/N=3) of palladium, platinum, and rhodium are 1.4 ng/L, 1.2 ng/L, and 1.8 ng/L, respectively. This method was applied to the determination of palladium, platinum, and rhodium in water, urine, and soil samples with good results.  相似文献   

3.
Li Z  Li X  Hu Q  Yin J  Chzn J  Yang G 《Annali di chimica》2006,96(5-6):355-363
In this paper, a new method for the simultaneous determination of palladium, platinum and rhodium ions was developed using a rapid column high performance liquid chromatography equipped with on-line enrichment technique. The palladium, platinum and rhodium ions were pre-column derivatized with DHAR to form colored chelates. The Pb-DHAR, Pt-DHAR and Rh-DHAR chelates could be absorbed onto the front of the enrichment column when they were injected into the injector and sent to the enrichment column [ZORBAX Stable Bound, 4.6 x 10 mm, 1.8 microm] with a 0.05 mol L(-1) of phosphoric acid solution as mobile phase. After enrichment, and by switching the six ports switching valve, the retained chelates were back-flushed by mobile phase and traveling towards the analytical column. The separation of these chelates on the analytical column [ZORBAX Stable Bound, 4.6 x 50 mm, 1.8 microm] was satisfactory with 54% acetonitrile (containing 0.05 mol L(-1) of phosphoric acid and 0.1% of tritonX-100) as mobile phase. Palladium, platinum and rhodium were separated completely within 2 min. By on-line enrichment technique, the enrichment factor of 100 was achieved, and the detection limits (S/N = 3) of palladium, platinum and rhodium reaches 1.4 ng L(-1), 1.6 ng L(-1) and 2.0 ng L(-1), respectively. This method was applied to the determination of palladium, platinum and rhodium in water, urine and soil samples with good results.  相似文献   

4.
In this paper, 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine (HNATR) was synthesized. A new method for the simultaneous determination of palladium, platinum, rhodium and gold ions as metal-HNATR chelates was developed using a rapid analysis column high performance liquid chromatography equipped with on-line solid phase extraction technique. The samples (Water, human urine, geological samples and soil) were digested by microwave acid-digestion. The palladium, platinum, rhodium and gold ions in the digested samples were pre-column derivatized with HNATR to form colored chelates. The Pd-HNATR, Pt-HNATR, Rh-HNATR and Au-HNATR chelates can be absorbed onto the front of the enrichment column when they were injected into the injector and sent to the enrichment column [Zorbax Stable Bound, 10 mm x 4.6 mm, 1.8 microm] with a buffer solution of 0.05 mol L(-1) phosphoric acid as mobile phase. After the enrichment had finished, by switching the six ports switching valve, the retained chelates were back-flushed by mobile phase and travelling towards the analytical column. These chelates separation on the analytical column [Zorbax Stable Bound, 10 mm x 4.6 mm, 1.8 microm] was satisfactory with 72% acetonitrile (containing 0.05 mol L(-1) of phosphoric acid and 0.1% of Triton X-100) as mobile phase. The palladium, platinum, rhodium and gold chelates were separated completely within 2.5 min. Compared to the routine chromatographic method, more then 80% of separation time was shortened. By on-line solid phase extraction system, a large volume of sample (10 mL) can be injected, and the sensitivity of the method was greatly improved. The detection limits (S/N=3, the sample injection volume is 10 mL) of palladium, platinum, rhodium and gold in the original samples reaches 1.4, 1.8, 2.0 and 1.2 ng L(-1), respectively. The relative standard deviations for five replicate samples were 2.4-3.6%. The standard recoveries were 88-95%. This method was applied to the determination of palladium, platinum, rhodium and gold in human urine, water and geological samples with good results.  相似文献   

5.
In this paper, a new method for the simultaneous determination of palladium and platinum ions was developed using a rapid column high performance liquid chromatograph equipped with an on‐line enrichment technique. The palladium and platinum ions were pre‐column derivatized with 5‐(p‐aminobenzylidene)‐thiorhodanine (ABTR) to form colored chelates. The Pd‐ABTR, Pt‐ABTR chelates can be absorbed onto the front of an enrichment column when they were injected into the injector and sent to the enrichment column [ZORBAX Stable Bound, 4.6 × 10 mm, 1.8 μm] with a buffer solution of 0.05 mol/L sodium acetate‐acetic acid buffer solution (pH 3.5) as mobile phase. After the enrichment had finished, by switching the six‐ports switching valve, the retained chelates were back‐flushed by mobile phase and traveled towards the analytical column. These chelates separation on the analytical column [ZORBAX Stable Bound, 4.6 × 50 mm, 1.8 μm] was satisfactory with 65% methanol (containing 0.05 mol/L of pH 3.5 sodium acetate‐acetic acid buffer salt and 0.01 mol/L of tritonX‐100) as mobile phase. The palladium and platinum were separated completely within 2 min. The detection limits (S/N = 3) of palladium and platinum are 1.4 ng/L and 1.6 ng/L, respectively. This method was applied to the determination of palladium and platinum in water and urine samples with good results.  相似文献   

6.
A simple and selective method using ammonium pyrrolidinedithiocarbamate modified activated carbon (APDC-AC) as solid phase extractant has been developed for speciation of As(III) in water samples. At pH 1.8–3.0, As(III) could be adsorbed quantitatively by APDC-AC, and then eluted completely with 2.0 mL of 0.1 mol L−1 HNO3, while As(V) could almost not be retained at pH 1–7. Effects of acidity, sample flow rate, concentration of elution solution and interfering ions on the recovery of As(III) have been systematically investigated. Under the optimal conditions, the adsorption capacity of APDC-AC for As(III) is 7.3 mg g−1. The detection limit (3σ) of As(III) is 0.05 ng mL−1 for graphite furnace atomic absorption spectrometry (GFAAS) with enrichment factor of 50, and the relative standard deviation (RSD) is 4.1% (n = 9, C = 5 ng mL−1). The method has been applied to the determination of trace As(III) in water, and the recoveries of As(III) are 100 ± 10%. Correspondence: Yiwei Wu, Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, P.R. China  相似文献   

7.
The electrooxidative behaviour and determination of quetiapine (QTP), a dibenzothiazepine derivative and antipsychotic agent, on a glassy carbon disc electrode was investigated using cyclic (CV), linear sweep (LSV), differential pulse (DPV) and Osteryoung square wave voltammetry (OSWV). Fully validated DP and SW voltammetric procedures are described for the determination of QTP. QTP in pH 3.5 acetate buffer solution presents a well-defined anodic response, studied by the proposed methods. This main response was due to the irreversible, diffusion-controlled, one-electron and one-proton oxidation of the aliphatic nitrogen of the piperazine ring. Under optimal conditions, a detection limit of 4.0 × 10−8 mol L−1 for DPV and 1.33 × 10−7 mol L−1 for OSWV, and a linear calibration graph in the range from 4.0 × 10−6 to 2.0 × 10−4 mol L−1 were obtained for both methods. The procedure was successfully applied to the determination of the drug in tablets, human serum and human urine with good recoveries. The detection limits were 6.20 × 10−7 mol L−1 and 5.92 × 10−7 mol L−1 in human serum and 1.44 × 10−7 mol L−1 and 1.31 × 10−6 mol L−1 in human urine, for the DPV and OSWV method, respectively.  相似文献   

8.
A method constituted by molecularly imprinted solid-phase extraction (MISPE) with high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) was developed for cotinine analysis in saliva samples. For this purpose, the separation was carried out with a C18 reversed-phase column at 20 °C. The mobile phase which was composed of a mixture of 09:91 (v/v) acetonitrile/phosphate buffer, pH 6.3, was delivered with isocratic flow rate at 1.4 mL min−1. Employing MISPE, the best conditions were achieved with 1.5 mL of saliva plus 1.5 mL of 0.1 mol L−1 of acetate buffer, pH 5.5, which were then passed through a cartridge previously conditioned with 2 mL acetonitrile, 2 mL methanol, and 2 mL of 0.1 mol L−1 sodium acetate buffer, pH 5.5. The washing was carried out with 1 mL deionized water, 1 mL of 0.1 mol L−1 sodium hydroxide, and 1 mL hexane; finally; the cotinine elution was carried out with 3 mL methanol/water (97.5: 2.5, v/v). Linearity ranged from 30 to 500 ng mL−1 with r > 0.99. Intra-assay, interassay precision, and accuracy ranged from 3.1% to 10.1%, 5.2% to 15.9%, and 99.22% to 111.17%, respectively. The detection and quantification limits were 10 and 30 ng mL−1, respectively. This investigation has provided a reliable method for routine cotinine determination in saliva, and it is an important tool for monitoring cigarette smoke exposure in smokers. The method was applied in five smokers’ samples who consumed around five to 20 cigarettes per day and the values of cotinine in saliva were from 66.7 to 316.16 ng mL−1.  相似文献   

9.
CdTe quantum dots (QDs) were modified with thioglycolic acid (TGA) and synthesized in aqueous medium. The optimum fluorescence intensity was found to be at pH 6.24 with a CdTe QDs concentration of 4.96 × 10−7 mol L−1. The quenched fluorescence intensity of CdTe QDs is linearly proportional to V(V) concentration from 10 to 200 ng mL−1 with correlation coefficient R = 0.9985. The limit of detection for V(V) was 2.07 ng mL−1. The proposed method was successfully applied to the analysis of trace amounts of V(V) in water samples with recovery of 96.5–101.8%, and the results were in good agreement with those of electrothermal atomic absorption spectrometry.  相似文献   

10.
A self-assembled electrode with a meso-2,3-dimercaptosuccinic acid (DMSA) monolayer has been characterized by electrochemical quartz crystal microbalance and complex impedance analysis, surface enhanced Raman spectroscopy and cyclic voltammetry. The self-assembled electrode was used for the simultaneous electrochemical detection of epinephrine (EP) and uric acid (UA) in phosphate buffer of pH 7.7. The simultaneous oxidation of EP and UA was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and the signals for each method were well separated with a potential difference of over 330 mV and without interference by each other. The detection limit of EP is 5.4 × 10−8 mol L−1 by CV and 5.3 × 10−8 mol L−1 by DPV and that of UA is 8.4 × 10−8 mol L−1 by CV and 4.2 × 10−8 mol L−1 by DPV. The DMSA self-assembled electrode can be applied to the simultaneous determination of EP and UA.  相似文献   

11.
A sensitive catalytic kinetic spectrofluorimetric approach for determining ng mL−1 levels of rhodium is presented, and the possible mechanism of the catalytic reaction was investigated. The determination is based on the catalytic property of rhodium to enhance the reaction of o-vanillin salicylhydrazone (OVSH) with potassium bromate in a water-ethanol medium at pH 4.80 and 45 °C. The presence of β-cyclodextrin (β-CD) obviously sensitized the assay due to its high inclusion ability towards OVSH. Under optimized experimental conditions, fluorescence measurements of the β-CD-rhodium-KBrO3-OVSH catalytic kinetic reaction system were carried out in its fluorescent band centered at λex = 333 nm and λem = 476 nm, respectively. The calibration graph was linear over the concentration range of 0.47–100 ng mL−1 with a detection limit of 0.14 ng mL−1. The effect of interferences was discussed, and the results show that the extraction method can be used to separate rhodium from interference species such as iridium. The proposed method, applied to several synthetic mixtures containing rhodium mixed with varying amounts of metal salts, produced satisfactory results.  相似文献   

12.
The electrochemical behavior of epinephrine (EP) at a mercaptoacetic acid (MAA) self-assembled monolayer modified gold electrode was studied. The MAA/Au electrode is demonstrated to promote the electrochemical response of epinephrine by cyclic voltammetry. The possible reaction mechanism is also discussed. The diffusion coefficient D of EP is 6.85 × 10−6 cm2 s−1. In 0.1 mol L−1 phosphate buffer (pH 7.20), a sensitive oxidation peak was observed at 0.177 V, and the peak current is proportional to the concentration of EP in the range of 1.0 × 10−5–2.0 × 10−4 mol L−1 and 1.0 × 10−7–1.0 × 10−6 mol L−1. The detection limit is 5 × 10−8 mol L−1. The modified electrode is highly stable and can be applied to the determination of EP in practical injection samples. The method is simple, quick, sensitive and accurate.  相似文献   

13.
Thermally two-dimensional lattice graphene (GR) and biocompatibility chitosan (CS) act as a suitable support for the deposition of palladium nanoparticles (PdNPs). A novel hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) in thin film of CS containing GR and PdNPs was developed. The surface morphologies of a set of representative membranes were characterized by means of scanning electron microscopy and showed that the PdNPs are of a sphere shape and an average diameter of 50 nm. Under the optimal conditions, the immobilized Hb showed fast and excellent electrocatalytic activity to H2O2 with a small Michaelis–Menten constant of 16 μmol L−1, a linear range from 2.0 × 10−6 to 1.1 × 10−3 mol L−1, and a detection limit of 6.6 × 10−7 mol L−1. The biosensor also exhibited other advantages, good reproducibility, and long-term stability, and PdNPs/GR–CS nanocomposites film would be a promising material in the preparation of third generation biosensor.  相似文献   

14.
The possibility was investigated of using 2-mercaptobenzothiazole (MBT) for Ag(I) concentration by micellar extraction at cloud point (CP) temperature and subsequent determination by flame atomic absorption spectrometry (FAAS). The method is based on the complexation of Ag(I) with 2-mercaptobenzothiazole (MBT) in the presence of non-ionic micelles of Triton X-114. The effect of experimental conditions such as pH, concentration of chelating agent and surfactant, equilibration temperature and time on cloud point extraction was studied. Under the optimum conditions, the preconcentration of 10 mL of water sample in the presence of 0.1% Triton X-114 and 2 × 10−4 mol L−1 2-mercaptobenzothiazole permitted the detection of 2.2 ng mL−1 silver. The calibration graph was linear in the range of 10–200 ng mL−1, and the recovery of more than 99% was achieved. The proposed method was used in FAAS determination of Ag(I) in water samples.  相似文献   

15.
Sensitive fluorescent probes for the determination of hydrogen peroxide and glucose were developed by immobilizing enzyme horseradish peroxidase (HRP) on Fe3O4/SiO2 magnetic core–shell nanoparticles in the presence of glutaraldehyde. Besides its excellent catalytic activity, the immobilized enzyme could be easily and completely recovered by a magnetic separation, and the recovered HRP-immobilized Fe3O4/SiO2 nanoparticles were able to be used repeatedly as catalysts without deactivation. The HRP-immobilized nanoparticles were able to activate hydrogen peroxide (H2O2), which oxidized non-fluorescent 3-(4-hydroxyphenyl)propionic acid to a fluorescent product with an emission maximum at 409 nm. Under optimized conditions, a linear calibration curve was obtained over the H2O2 concentrations ranging from 5.0 × 10−9 to 1.0 × 10−5 mol L−1, with a detection limit of 2.1 × 10−9 mol L−1. By simultaneously using glucose oxidase and HRP-immobilized Fe3O4/SiO2 nanoparticles, a sensitive and selective analytical method for the glucose detection was established. The fluorescence intensity of the product responded well linearly to glucose concentration in the range from 5.0 × 10−8 to 5.0 × 10−5 mol L−1 with a detection limit of 1.8 × 10−8 mol L−1. The proposed method was successfully applied for the determination of glucose in human serum sample.  相似文献   

16.
 The catalytic effect of manganese(II) on the oxidation of Naphthol Blue Black, with potassium periodate in the presence of 1,10-phenanthroline in weakly acidic media is studied. The reaction is followed spectrophotometrically by measuring the decrease in the absorbance of the dye at 618 nm. Under the optimum conditions (3 × 10−5 mol dm−3 Naphthol Blue Black, 6 × 10−4 mol dm−3 potassium periodate, 1 × 10−4 mol dm−3 1,10-phenanthroline, 0.1 mol dm−3 acetate buffer – pH 4.0, 60 °C, 5 min) manganese(II) in the range 0.08–4 ng cm−3 can be determined by the fixed-time method with a detection limit of 0.025 ng cm−3. The influence of foreign ions on the accuracy of the results is investigated. The developed method is highly sensitive, selective, and simple. The method was applied successfully to the determination of manganese in cucumbers, garlic cloves and parsley leaves. Received June 12, 2000. Revision December 12, 2000.  相似文献   

17.
Determination of the effective components in traditional Chinese medicine is one of the key steps for its identification. In this paper a novel and sensitive chemiluminescence (CL) method for the determination of rhein coupled with flow-injection analysis (FIA) is developed. It is based on the strong sensitizing effect on the weak CL reaction between luminol and ferricyanide in alkaline solution. Under optimal experimental conditions, the relative CL intensity is proportional to the concentration of rhein in the range of 7.0 × 10−12–7.0 × 10−10 mol L−1 and 1.0 × 10−9–4.0 × 10−5 mol L−1, the detection limit is 1.478 × 10−13 mol L−1, and the relative standard deviation (RSD) for 9 parallel measurements of 1.408 × 10−7 mol L−1 rhein is 3.4%. The method was successfully applied to the determination of rhein in pharmaceutical preparations. The possible mechanism of CL is also briefly discussed.  相似文献   

18.
Simple and sensitive electrochemical method for the determination of nitrite, based on a nano-alumina-modified glassy carbon electrode (GCE), is described. Nitrite yields a well-defined oxidation peak whose potential is 0.74 V at the nano-alumina-coated GCE in 0.1 mol L−1 phosphate buffer (pH 5.0). Compared with bare GCE, the nano-alumina-modified GCE has evident catalytic effect towards the oxidation of nitrite, and its peak current can be significantly enhanced. Some of the experimental parameters were optimized for the determination of nitrite. The oxidation peak current was proportional to nitrite concentration in the range of 5.0 × 10−8–1.1 × 10−3 mol L−1, and a detection limit of 1.0 × 10−8 mol L−1 was obtained. This method has been successfully used to the determination of nitrite in sausage sample. Furthermore, results obtained by the method have been compared with spectrophotometric method.  相似文献   

19.
A simple sensor based on bare carbon ionic liquid electrode was fabricated for simultaneous determination of dihydroxybenzene isomers in 0.1 mol L−1 phosphate buffer solution (pH 6.0). The oxidation peak potential of hydroquinone was about 0.136 V, catechol was about 0.240 V, and resorcinol 0.632 V by differential pulse voltammetric measurements, which indicated that the dihydroxybenzene isomers could be separated absolutely. The sensor showed wide linear behaviors in the range of 5.0 × 10−7–2.0 × 10−4 mol L−1 for hydroquinone and catechol, 3.5 × 10−6–1.535 × 10−4 mol L−1 for resorcinol, respectively. And the detection limits of the three dihydroxybenzene isomers were 5.0 × 10−8, 2.0 × 10−7, 5.0 × 10−7 mol L−1, respectively (S/N = 3). The proposed method could be applied to the determination of dihydroxybenzene isomers in artificial wastewater and the recovery was from 93.9% to 104.6%.  相似文献   

20.
Silica gel was prepared by the sol–gel method, modified with nanometer-sized zirconium oxide, and this material was characterized by X-ray diffraction. A micro-column packed with silica gel modified with nanometer zirconium oxide as sorbent has been developed for the quantitative separation and preconcentration of trace amounts of chromium(III) prior to their determination by electrothermal atomic absorption spectrometry. Total chromium was determined after the reduction of chromium(VI) to chromium(III) by 10% (m/v) of aqueous ascorbic acid as reducing reagent. The adsorption capacity for chromium(III) was found to be 2.36 mg g−1. The detection limit for chromium(III) was 15 ng L−1 with an enrichment factor of 100. The relative standard deviation was 3.2% (n = 7, c = 2.0 ng mL−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号