首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic amperometric procedures for measurement of Hg (II), based on the inhibitive action of this metal on urease enzyme activity, were developed. Screen-printed carbon electrodes (SPCEs) and gold nanoparticles modified screen-printed carbon electrodes (AuNPs/SPCEs) were used as supports for the cross-linking inmobilization of the enzyme urease. The amperometric response of urea was affected by the presence of Hg (II) ions which caused a decreasing in the current intensity. The optimum working conditions were found using experimental design methodology. Under these conditions, repeatability and reproducibility for both types of biosensors were determined, reaching values below 6% in terms of residual standard deviation. The detection limit obtained for Hg (II) was 4.2 × 10?6 M for urease/SPCE biosensor and 5.6 × 10?8 M for urease/AuNPs/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of Hg (II) in spiked human plasma samples.  相似文献   

2.
Xathine oxidase was chemically modified with β-cyclodextrin-branched carboxymethylcellulose and further supramolecularly immobilized on a gold electrode, previously coated with a monolayer of 1-adamantanyl residues. The electrode was employed for constructing an amperometric biosensor device, which showed linear response (poised at +700 mV vs. Ag/AgCl) toward xanthine concentration between 300 μM and 10.4 mM at pH 7.0. The biosensor reached 95% of steady-state current in about 14 s and its sensitivity was 8.2 mA/M cm2. The enzyme electrode retained 93% of its initial activity after 3 weeks of storage at 4 °C in 50 mM sodium phosphate buffer, pH 7.0. The supramolecular nature of the immobilization approach was confirmed by cyclic voltammetry.  相似文献   

3.
The recent development in the nanotechnology has paved the way for large number of new materials and devices of desirable properties which have useful functions for electrochemical sensor and biosensor applications. In this paper, a novel enzymeless glucose sensor is developed on the discovery that the FeOOH nanowire in fact possesses an intrinsic enzyme mimetic electrocatalytic activity similar to that found in natural peroxidases. The electrode modified with FeOOH nanowires showed a wide linear range (15 μM–3 mM) and high sensitivity (12.13 μA mM? 1) for glucose sensing. Other excellent performances such as highly reproducible response, long-term stability, sound mechanical and chemical stability are also observed, and the interferences of ascorbic acid and dopamine can almost be completely avoided. The good analytical performance, low cost and straightforward preparation method made this novel electrode material promising for the development of effective glucose sensors.  相似文献   

4.
In this article, a new kind of hairpin DNA Electrochemical biosensor using nitroacridone as electrochemical indicator was first designed, and used to detect BCR/ABL fusion gene in Chronic Myelogenous Leukemia (CML). The results indicated that in pH 7.0 Tris–HCl buffer solution, the oxidation peak current was linear with the concentration of complementary strand in the range of 6.2 × 10−8–3.1 × 10−7 mol/l with a detection limit of 5.3 × 10−9 mol/l. This new hairpin DNA electrochemical biosensor demonstrates its excellent specificity for single-base mismatch and complementary (dsDNA) after hybridization, and this probe has been used for assay of PCR product of a real sample with satisfactory result.  相似文献   

5.
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 × 107 to 2.03 × 108 molecules per capsule with decrease in pH from 4.5 to 3. The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides.  相似文献   

6.
An electrochemical biosensor for detection of fructose in food samples was developed by immobilization of fructose dehydrogenase (FDH) on cysteamine and poly(amidoamine) dendrimers (PAMAM)-modified gold electrode surface. Electrochemical analysis was carried out by using hexacyanoferrate (HCF) as a mediator and the response time was 35 s at +300 mV vs. Ag/AgCl. Moreover, some parameters such as pH, enzyme loading and type of PAMAM (Generations 2, 3 and 4) were investigated. Then, the FDH biosensor was calibrated for fructose in the concentration range of 0.25–5.0 mM. To evaluate its utility, the FDH biosensor was applied for fructose analysis in real samples. Finally, obtained data were compared with those measured with HPLC as a reference method.  相似文献   

7.
Zinc oxide nanotube (ZNT) arrays were grown on Si/Ag substrate by one-step chemical process in an aqueous solution and further used as a working electrode to fabricate an enzyme-based cholesterol biosensor through immobilization of cholesterol oxidase (ChOx). The fabricated biosensors exhibit high and reproducible sensitivity of 79.40 μA/mM/cm2, wide linear range from 1.0 μM to 13.0 mM, fast response time of ~ 2 s and ultra-low detection limit of 0.5 nM (S/N = 3) for cholesterol sensing. The anti-interference ability and long-term stability of the biosensor were also assessed. Finally, the biosensor was applied to analyze cholesterol concentration in human serum samples.  相似文献   

8.
An electrochemiluminescent (ECL) enzyme biosensor was developed for detection of hypoxanthine based on ECL of 6-(4-methoxyphenyl)-2-methylimidazo[1,2-a]pyrazin-3(7H)-one (MCLA). The xanthine oxidase (XOD) was modified on the heated indium–tin-oxide (ITO) electrode, and the ECL enzyme biosensor was found to be electrode temperatures depend, this was because that both the diffusion and convection of compounds near the electrode surface and the catalytic reaction of immobilized enzyme were affected by the temperature of electrode (Te). In this work, the highest sensitivity was gained when Te was 36 °C. Under the optimum condition, the linear response range of hypoxanthine (HX) was found to be 0.3–27 μmol/L, and the detection limit (defined as the concentration that could be detected at the signal-to-noise ration of 3) was 0.15 μmol/L.  相似文献   

9.
《Supramolecular Science》1998,5(5-6):699-700
Considering the poor adhesion of electrode to substrate, diamond film as a new kind of substrate material was used to fabricate a glucose sensor. Particularly, the immobilizing enzyme was investigated in detail. SEM and XPS were chosen to identify whether organic functional groups were grafted to electrode surface or not. The response characteristics of a diamond film glucose sensor show that this glucose sensor has good properties in the linear range 0.5–11.4 mM l-1, sensitivity 4.0 nA mM-1 mm-2 and peak reaction speed 2.5 μA. The glucose sensor based on diamond film was a novel microchip glucose sensor with good potential.  相似文献   

10.
The efficiency of a pre-absorbed bovine serum albumin (BSA) layer in blocking the non-specific adsorption of different proteins on hydrophobic and hydrophilic surfaces was evaluated qualitatively and quantitatively using infrared reflection spectroscopy supported by spectral simulations. A BSA layer with a surface coverage of 35% of a close-packed monolayer exhibited a blocking efficiency of 90–100% on a hydrophobic and 68–100% on a hydrophilic surface, with respect to the non-specific adsorption of concanavalin A (Con A), immunoglobulin G (IgG), and staphylococcal protein A (SpA). This BSA layer was produced using a solution concentration of 1 mg/mL and 30 min incubation time. BSA layers that were adsorbed at conditions commonly employed for blocking (a 12 h incubation time and a solution concentration of 10 mg/mL) exhibited a blocking activity that involved competitive adsorption–desorption. This activity resulted from the formation of BSA–phosphate surface complexes, which correlated with the conformation of adsorbed BSA molecules that was favourable for blocking. The importance of optimisation of the adsorbed BSA layer for different surfaces and proteins to achieve efficient blocking was addressed in this study.  相似文献   

11.
A high-sensitive cholesterol amperometric biosensor based on the immobilization of cholesterol oxidase (ChOx) onto the ZnO nanoparticles has been fabricated which shows a very high and reproducible sensitivity of 23.7 μA mM?1 cm?2, detection limit (based on S/N ratio) 0.37 ± 0.02 nM, response time less than 5 s, linear range from 1.0 to 500.0 nM and correlation coefficient of R = 0.9975. A relatively low value of enzyme’s kinetic parameter (Michaelis–Menten constant) ~4.7 mM has been obtained which indicates the enhanced enzymatic affinity of ChOx to Cholesterol. To the best of our knowledge, this is the first report in which such a very high-sensitivity and low detection limit has been achieved for the cholesterol biosensor by using ZnO nanostructures modified electrodes.  相似文献   

12.
A novel electrogenerated chemiluminescence aptamer-based (ECL-AB) biosensor for the determination of a small molecule drug is designed employing cocaine-binding aptamer as molecular recognition element for cocaine as a model analyte and ruthenium complex served as an ECL label. A 5′-terminal cocaine-binding aptamer with the ECL label at 3′-terminal of the aptamer was utilized as an ECL probe. The ECL-AB biosensors were fabricated by immobilizing the ECL probe onto a gold electrode surface via thiol-Au interactions. An enhanced ECL signal is generated upon recognition of the target cocaine, attributed to a change in the conformation of the ECL probe from random coil-like configuration on the probe-modified film to three-way junction structure, in close proximity to the sensor interface. The integrated ECL intensity versus the concentration of cocaine was linear in the range from 5.0 × 10−9 to 3.0 × 10−7 M. The detection limit was 1.0 × 10−9 M. This work demonstrates that the combination of a highly binding aptamer to analyte with a highly sensitive ECL technique to design ECL-AB biosensor is a great promising approach for the determination of small molecule drugs.  相似文献   

13.
Based on layer-by-layer assembled DNA functionalized single-walled carbon nanotube hybrids, a DNA biosensor for the detection of arsenic(III) in a nearly physiological pH environment was developed. The redox process between arsenic(III) and arsenic(0) on the biosensor was proved. The growth of those hybrids on glassy carbon electrode was monitored by detecting arsenic(III). The arsenic(III) current on the biosensor was similar over a broad pH range (3.0–8.0) and the limit of detection (S/N = 3) was 0.05 μg L−1 at pH 7.0. The biosensor can be reused up to 16 times.  相似文献   

14.
In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase–H202 reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis–Menten behaviour at low H202 concentrations (< 100 mM) with apparent constant KMapp = 84 ± 3 mM and maximal initial velocity VMapp = 13.4 μS min? 1. Inhibition by cyanide was found to be non-competitive and inhibition binding constant Ki was 13.9 ± 0.3 μM. The decrease of the biosensor response by increasing cyanide concentration was linear up to 50 μM, with a cyanide detection limit of 6 μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance RP. On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50 μM range. Inhibition coefficient I50 calculated by this powerful label-free and substrate-free technique (24.3 μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9 μM).  相似文献   

15.
This work reports a new type of disposable electrochemical sensor for the determination of bisphenol A (BPA). The working electrodes were fabricated by sputtering gold nanoparticles on commercial art paper and then modifying the gold layer with multi-walled carbon nanotubes (MWCNTs). The electrode in their intermediated and final stage was characterized by atomic force microscope, scanning electron microscope and electrochemical techniques. To perform electrochemical analysis, the resulting electrode was integrated with a homemade paper-based analytical device, which could also ensure the immobilization of MWCNTs on the electrode surface without any functionalization. The determination of BPA was investigated by linear sweep voltammetry (LSV). A wide linearity in the range from 0.2 to 20 mg/L with a detection limit of 0.03 mg/L (S/N = 3) was obtained. The between-sensor reproducibility was 5.7% (n = 8) for 0.5 mg/L BPA. The proposed sensor showed good resistance against interferences and was applied to detect BPA leached from real plastic samples with satisfying results. This disposable sensor is readily mass-produced and has been verified to serve as an attractive alternative to screen-printed electrodes for practical applications.  相似文献   

16.
A novel amperometric glucose biosensor was developed by entrapping glucose oxidase (GOD) in chitosan (CS) composite doped with ferrocene monocarboxylic acid-modified magnetic core-shell Fe3O4@SiO2 nanoparticles (FMC-AFSNPs). It is shown that the obtained magnetic bio-nanoparticles attached to the surface of a carbon paste electrode (CPE) with the employment of a permanent magnet showed excellent electrochemical characteristics and at the same time acted as mediator to transfer electrons between the enzyme and the electrode. Under optimal conditions, this biosensor was able to detect glucose in the linear range from 1.0 × 10−5 to 4.0 × 10−3 M with a detection limit of 3.2 μM (S/N = 3). This immobilization approach effectively improved the stability of the electron transfer mediator and is promising for construction of biosensor and bioelectronic devices.  相似文献   

17.
This work reports the development of screen-printed quantum dots (QDs)-based DNA biosensors utilizing graphite electrodes with embedded bismuth citrate as a bismuth precursor. The sensor surface serves both as a support for the immobilization of the oligonucleotide and as an ultrasensitive voltammetric QDs transducer relying on bismuth nanoparticles. The utility of this biosensor is demonstrated for the detection of the C634R mutation through hybridization of the biotin-tagged target oligonucleotide with a surface-confined capture complementary probe and subsequent reaction with streptavidin-conjugated PbS QDs. The electrochemical transduction step involved anodic stripping voltammetric determination of the Pb(II) released after acidic dissolution of the QDs. Simultaneously with the electrolytic accumulation of Pb on the sensor surface, the embedded bismuth citrate was converted in situ to bismuth nanoparticles enabling ultra-trace Pb determination. The biosensor showed a linear relationship of the Pb(II) peak current with respect to the logarithm of the target DNA concentrations from 0.1 pmol L 1 to 10 nmol L 1, and the limit of detection was 0.03 pmol L 1. The biosensor exhibited effective discrimination between a single-base mismatched sequence and the fully complementary target DNA. These “green” biosensors are inexpensive, lend themselves to easy mass production, and hold promise for ultrasensitive bioassay formats.  相似文献   

18.
A pumped bed-membrane bioreactor (PB-MBR) combining powdered activated carbon (PAC) adsorption with bacterial degradation was studied for the purification of tap water, spiked with 2 mg/l of phenanthrene, to sub-ppm levels. The feedwater was supplemented with nitrogen and phosphorous to reach a COD:N:P ratio of 100:10:1. PAC concentration was maintained at 5 g/l. Polyacrylonitrile (PAN) flat-sheet membranes of 250 and 1500 kDa MWCO were tested. The overall efficiency during long term operation was tested at different hydraulic conditions with intermittent biosolids wastage and high frequency-chemical cleaning (every 2–3 days) or without chemical cleaning and without sludge removal. With intermittent PAC dosage-high frequency chemical cleaning steady fluxes of 150–200 l/m2 h were maintained. With no chemical cleaning-no solids wastage, steady fluxes of 22.5±3.8 and 28.8±4.8 l/m2 h were achieved for the 250 and 1500 kDa membranes, respectively. An almost complete removal of phenanthrene was observed in all cases, regardless the type of membrane, operating protocols or hydraulic conditions applied (permeate concentration was consistently below 5 μg/l). The relatively high permeate fluxes and constant filterability observed are attributed to the turbulent flow regime and high PAC-slurry recirculation ratio generated.  相似文献   

19.
A sensitive aptamer-based sandwich-type sensor is presented to detect human thrombin using quantum dots as electrochemical label. CdSe quantum dots were labeled to the secondary aptamer, which were determined by the square wave stripping voltammetric analysis after dissolution with nitric acid. The aptasensor has a lower detection limit at 1 pM, while the sample consumption is reduced to 5 μl. The proposed approach shows high selectivity and minimizes the nonspecific adsorption, so that it was used for the detection of target protein in the human serum sample. Such an aptamer-based biosensor provides a promising strategy for screening biomarkers at ultratrace levels in the complex matrices.  相似文献   

20.
In the present work, a more sensitive and conveniently usable electrode sensor for a trace analysis of heavy metal was developed by using Bi nanopowder synthesized by levitational gas condensation (LGC) method. It was observed from the TEM image that the Bi nanopowder is spherical in shape with a size of nearly 50 nm. The XRD pattern revealed intense peaks which can be indexed as a rhombohedral structure of Bi without any other diffraction peaks corresponding to an oxide or an impurity. This indicates that the resulting nanopowder synthesized by the LGC method is a highly crystallized Bi with a high purity. The square wave anodic stripping voltammograms (SWASV), experimentally measured for the Bi nanopowder electrode, showed well-defined and highly reproducible electrochemical responses relating to the stripping of Cd and Pb. The detection limit of the electrode was estimated to be 0.15 μg/l and 0.07 μg/l for Cd and Zn, respectively, on the basis of the signal-to-noise characteristics (S/N = 3) of the response for the 1.0 μg/l solution under a 10 min accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号