首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
李爱仙  段素青  张伟 《中国物理 B》2016,25(10):108506-108506
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.  相似文献   

2.
In this article, I present a theoretical study of the electron and nuclear spin coherence times of shallow donor spin qubits in zinc oxide (ZnO) at low temperature. The influence of different spin-phonon processes as well as different spin-spin processes on the spin coherence time of shallow donors in ZnO is considered, both in the case of an electron spin qubit and in the case of a nuclear spin qubit encoded on a shallow donor. It is estimated that the electron spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of microseconds, limited by the nuclear spectral diffusion process. The electron spin coherence time of an isolated indium shallow donor can be extended to few milliseconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the electron spin coherence time of an isolated indium shallow donor is only limited by a spin-lattice decoherence process. It is also estimated that the nuclear spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of milliseconds, limited by the nuclear spectral diffusion process. The nuclear spin coherence time of an isolated indium shallow donor can be extended to few seconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the nuclear spin coherence time of an isolated indium shallow donor is only limited by the cross relaxation decoherence process. This study thus shows the great potential of electron and nuclear spin qubits encoded on shallow donors in isotopically and chemically purified quasi-intrinsic ZnO for the implementation of quantum processor and/or quantum memories.  相似文献   

3.
A. Henstra 《Molecular physics》2013,111(7):859-871
Nuclear orientation via electron spin locking (NOVEL) is a technique to orient nuclear spins embedded in a solid. Like other methods of dynamic nuclear polarization (DNP) it employs a small amount of unpaired electron spins and uses a microwave field to transfer the polarization of these unpaired electron spins to the nuclear spins. Traditional DNP uses CW microwave fields, but NOVEL uses pulsed electron spin resonance (ESR) techniques: a 90 degree pulse–90 degree phase shift–locking pulse sequence is applied and during the locking pulse the polarization transfer is assured by satisfying the Hartmann–Hahn condition. The transfer is coherent and similar to coherence transfer between nuclear spins. However, NOVEL requires an extension of the existing theory to many, inequivalent nuclear spins and to arbitrary, i.e. high electron and nuclear spin polarization. In this paper both extensions are presented. The theory is applied to the system naphthalene doped with pentacene, where the proton spins are polarized using the photo-excited triplet states of the pentacene molecules and found to show excellent agreement with the experimentally observed evolution of the polarization transfer during the locking pulse.  相似文献   

4.
We have demonstrated a combination of frequency comb spin-echo protocol in a conventional microwave pulsed electron spin resonance spectrometer with gradient pulses of the external magnetic field applied for on-demand retrieval of signal microwave pulses at the required moments of time. A natural high-finesse periodic structure was used as a carrier of stored information. The structure is made out of hyperfine lines of electron spin resonance of tetracyanoethylene anion radicals in toluene at room temperature. Herein, we have also observed that using the pulses of gradient magnetic field can increase the memory capacity. The experimental results demonstrated promising opportunities for controlling electron nuclear spin coherence, which could be useful for implementation of broadband microwave or optical-microwave noise free quantum memory protocols.  相似文献   

5.
Pulsed electron paramagnetic resonance spectroscopy of the photoexcited, metastable triplet state of the oxygen-vacancy center in silicon reveals that the lifetime of the m(s)=±1 sublevels differs significantly from that of the m(s)=0 state. We exploit this significant difference in decay rates to the ground singlet state to achieve nearly ~100% electron-spin polarization within the triplet. We further demonstrate the transfer of a coherent state of the triplet electron spin to, and from, a hyperfine-coupled, nearest-neighbor (29)Si nuclear spin. We measure the coherence time of the (29)Si nuclear spin employed in this operation and find it to be unaffected by the presence of the triplet electron spin and equal to the bulk value measured by nuclear magnetic resonance.  相似文献   

6.
Tuning of nuclear magnetic resonance pulse sequences with pulsed "crusher" gradients or phase cycling serves to remove unwanted spin populations from the data acquisition window. Verification that unwanted spin population are not detected is often determined by the absence of obvious artifacts in an image. This approach is unsatisfactory in some instances because signal contamination with unwanted spin populations may not be obvious. This is a particular concern with multiple-spin echo, volume-selective, and other multiple-pulse sequences. A solution to this problem is the separation of spin populations using gradient echoes, allowing the existence of unwanted populations to be easily observed separately. Tuning of a pulse sequence is straightforward when spin populations can be independently observed.  相似文献   

7.
We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.  相似文献   

8.
We demonstrate the coherent control and electrical readout of ionized phosphorus donor nuclear spins in (nat)Si. By combining time-programed optical excitation with coherent electron spin manipulation, we selectively ionize the donors depending on their nuclear spin state, exploiting a spin-dependent recombination process at the Si/SiO(2) interface, and find a nuclear spin coherence time of 18 ms for the ionized donors. The presented technique allows for spectroscopy of ionized-donor nuclear spins and enhances the sensitivity of electron nuclear double resonance to a level of 3000 nuclear spins.  相似文献   

9.
An electron paramagnetic resonance (EPR) spin-coherence signal has been observed following a single pulse for rapidly tumbling radicals with well-resolved nuclear hyperfine splitting in fluid solution when B 1 is large enough to excite multiple hyperfine lines. This signal, which has the shape of a spin echo, arises from constructive interference of overlapping free induction decays (FIDs) from the hyperfine lines. It has been observed for 2,6-di-t-butyl-1,4-benzosemiquinone, 2,5-di-t-butyl-1,4-benzosemiquinone, 2,3,5,6-tetramethoxy-1,4-benzosemiquinone, 2,4,6-tri-t-butylphenoxyl radical, and 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy. It occurs at a time after the pulse that is equal to the inverse of the nuclear hyperfine splitting, independent of EPR resonance frequency from 250 MHz to 9.1 GHz. As the length of the pulse is increased, separate coherence signals can be observed that correspond to the beginning and end of the pulse. This coherence is distinct from the "single-pulse echo" signals discussed in the literature. For 2,6-di-t-butyl-1,4-benzosemiquinone, which has two resolved couplings (1.24 and 0.052 G), FID oscillations with a period that corresponds to the larger hyperfine coupling are observed on the coherence signal that arises from the smaller hyperfine coupling. If phase cycling is not perfect, the coherence signal can interfere with measurements of T 1 by saturation recovery. Authors' address: Gareth R. Eaton, Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA  相似文献   

10.
刘东奇  常彦春  刘刚钦  潘新宇 《物理学报》2013,62(16):164208-164208
通过电子注入的方法制备了含氮空位色心单光子源的金刚石荧光纳米颗粒. 自旋回声测试结果表明, 纳米颗粒中氮空位色心的相干时间T2很短, 介于0.86 μs至5.6 μs之间. Ramsey干涉条纹测试结果表明, 氮空位色心NV1点的退相干时间T2* 最大, 为0.7 μs, 其电子自旋共振谱可分辨的最小线宽为1.05 MHz. 并且NV1点的电子自旋共振谱可分辨氮空位色心本身的14N核自旋与 氮空位色心电子自旋之间的2.2 MHz超精细相互作用, 这对于在金刚石纳米颗粒中实现核自旋的操控和多个量子比特的门操作具有重要意义. 关键词: 纳米颗粒 氮空位色心 电子自旋  相似文献   

11.
Electron spin qubits in molecular systems offer high reproducibility and the ability to self-assemble into larger architectures. However, interactions between neighboring qubits are "always on," and although the electron spin coherence times can be several hundred microseconds, these are still much shorter than typical times for nuclear spins. Here we implement an electron-nuclear hybrid scheme which uses coherent transfer between electron and nuclear spin degrees of freedom in order to both effectively turn on or off interqubit coupling mediated by dipolar interactions and benefit from the long nuclear spin decoherence times (T(2n)). We transfer qubit states between the electron and (15)N nuclear spin in (15)N@C(60) with a two-way process fidelity of 88%, using a series of tuned microwave and radio frequency pulses and measure a nuclear spin coherence lifetime of over 100 ms.  相似文献   

12.
李睿 《物理学报》2015,64(16):167303-167303
半导体量子点中的电子自旋具有较长相干时间以及可扩展性的特点, 在近十几年来引起了人们的广泛兴趣. 人们常常利用电子自旋共振技术来对单个自旋进行操纵. 这样不但需要一个静磁场来使电子产生赛曼劈裂, 同时还需要一个与之垂直的局域振荡磁场. 但是, 在实验上产生足够强且具有固定频率的局域磁场是比较困难的. 后来人们发现, 局域的振荡电场也可以操纵单个电子自旋, 也就是所谓的电偶极自旋共振. 众所周知, 自旋只有自旋磁矩, 不会与电场有任何直接的相互作用. 所以, 电偶极自旋共振的发生必须依赖于某些媒质. 这些媒质包括:量子点材料中的自旋轨道耦合作用, 量子点中的局域磁场梯度, 以及量子点中电子自旋与核自旋的超精细相互作用. 这些媒质能诱导出自旋与电场之间间接的相互作用, 从而外电场操纵单个电子自旋得以实现. 本文总结归纳了目前半导体量子点系统中发生电偶极自旋共振的三种主要物理机理.  相似文献   

13.
We demonstrate local manipulation and detection of nuclear spin coherence in semiconductor quantum wells by an optical pump-probe technique combined with pulse rf NMR. The Larmor precession of photoexcited electron spins is monitored by time-resolved Kerr rotation (TRKR) as a measure of nuclear magnetic field. Under the irradiation of resonant pulsed rf magnetic fields, Rabi oscillations of nuclear spins are traced by TRKR signals. The intrinsic coherence time evaluated by a spin-echo technique reveals the dependence on the orientation of the magnetic field with respect to the crystalline axis as expected by the nearest neighbor dipole-dipole interaction.  相似文献   

14.
We demonstrate the electrical detection of pulsed X-band electron nuclear double resonance (ENDOR) in phosphorus-doped silicon at 5 K. A pulse sequence analogous to Davies ENDOR in conventional electron spin resonance is used to measure the nuclear spin transition frequencies of the (31)P nuclear spins, where the (31)P electron spins are detected electrically via spin-dependent transitions through Si/SiO(2) interface states, thus not relying on a polarization of the electron spin system. In addition, the electrical detection of coherent nuclear spin oscillations is shown, demonstrating the feasibility to electrically read out the spin states of possible nuclear spin qubits.  相似文献   

15.
We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros.  相似文献   

16.
We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt, Science 316, 1312 (2007)10.1126/science.1139831] when a proximal electronic spin associated with a nitrogen-vacancy (N-V) center is being interrogated by optical radiation. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment.  相似文献   

17.
We report a measurement of the spin-echo decay of a single electron spin confined in a semiconductor quantum dot. When we tip the spin in the transverse plane via a magnetic field burst, it dephases in 37 ns due to the Larmor precession around a random effective field from the nuclear spins in the host material. We reverse this dephasing to a large extent via a spin-echo pulse, and find a spin-echo decay time of about 0.5 micros at 70 mT. These results are in the range of theoretical predictions of the electron spin coherence time governed by the electron-nuclear dynamics.  相似文献   

18.
We polarize nuclear spins in a GaAs double quantum dot by controlling two-electron spin states near the anticrossing of the singlet (S) and m(S)= +1 triplet (T+) using pulsed gates. An initialized S state is cyclically brought into resonance with the T+ state, where hyperfine fields drive rapid rotations between S and T+, "flipping" an electron spin and "flopping" a nuclear spin. The resulting Overhauser field approaches 80 mT, in agreement with a simple rate-equation model. A self-limiting pulse sequence is developed that allows the steady-state nuclear polarization to be set using a gate voltage.  相似文献   

19.
A general theoretical approach to pulsed Overhauser-type dynamic nuclear polarization (DNP) is presented. Dynamic nuclear polarization is a powerful method to create non-thermal polarization of nuclear spins, thereby enhancing their nuclear magnetic resonance signals. The theory presented can treat pulsed microwave irradiation of electron paramagnetic resonance transitions for periodic pulse sequences of general composition. Dynamic nuclear polarization enhancement is analyzed in detail as a function of the microwave pulse length for rectangular pulses and pulses with finite rise time. Characteristic oscillations of the DNP enhancement are found when the pulse-length is stepwise increased, originating from coherent motion of the electron spins driven by the pulses. Experimental low-field DNP data are in very good agreement with this theoretical approach.  相似文献   

20.
We demonstrate the suppression of nuclear-spin fluctuations in an InAs quantum dot and measure the timescales of the spin narrowing effect. By initializing for tens of milliseconds with two continuous wave diode lasers, fluctuations of the nuclear spins are suppressed via the hole-assisted dynamic nuclear polarization feedback mechanism. The fluctuation narrowed state persists in the dark (absent light illumination) for well over 1 s even in the presence of a varying electron charge and spin polarization. Enhancement of the electron spin coherence time (T2*) is directly measured using coherent dark state spectroscopy. By separating the calming of the nuclear spins in time from the spin qubit operations, this method is much simpler than the spin echo coherence recovery or dynamic decoupling schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号