首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A multilevel Anderson model is employed to simulate the system of a nanostructure tunnel junction with any number of one-particle energy levels. The tunneling current, including both shell-tunneling and shell-filling cases, is theoretically investigated via the nonequilibrium Green's function method. We obtain a closed form for the spectral function, which is used to analyze the complicated tunneling current spectra of a quantum dot or molecule embedded in a double-barrier junction. We also show that negative differential conductance can be observed in a quantum dot tunnel junction when the Coulomb interactions with neighboring quantum dots are taken into account.  相似文献   

2.
Electron tunneling through a single discrete level of a quantum dot, coupled to two ferromagnetic leads, is studied theoretically in the sequential tunneling regime. Electron correlations and spin relaxation processes on the dot are taken into account. It is shown that strong Coulomb correlations can enhance tunnel magnetoresistance in a certain bias range. The effect, however, is suppressed by spin-flip processes.  相似文献   

3.
We demonstrate the effect of single-electron tunneling (SET) through a carbon nanotube quantum dot on its nanomechanical motion. We find that the frequency response and the dissipation of the nanoelectromechanical system to SET strongly depends on the electronic environment of the quantum dot, in particular, on the total dot capacitance and the tunnel coupling to the metal contacts. Our findings suggest that one could achieve quality factors of 10(6) or higher by choosing appropriate gate dielectrics and/or by improving the tunnel coupling to the leads.  相似文献   

4.
The controllability problem for two-dimensional dissipative tunneling in the system of tunnel-coupled quantum dots (a quantum molecule), interacting quantum molecules, and the system “ACM/CTM cantilever tip-quantum dot” simulated by a 2D oscillator potential in a heat bath and an external electric field is investigated. The obtained results qualitatively correspond to the separate experimental volt-ampere characteristics (VACs) for the system “platinized ACM/CTM cantilever tip-gold quantum dot” obtained at Scientific-Research Physical-Technical Institute with Nizhnii Novgorod State University. The previously-predicted 2D tunnel bifurcations with dissipation for the case of interacting particles tunneling in parallel are found to be experimentally observed and stable.  相似文献   

5.
Coupling a quantum system to a bosonic environment always give rise to inelastic processes, which reduce the coherency of the system. We measure energy-dependent rates for inelastic tunneling processes in a fully controllable two-level system of a double quantum dot. The emission and absorption rates are well reproduced by Einstein's coefficients, which relate to the spontaneous emission rate. The inelastic tunneling rate can be comparable to the elastic tunneling rate if the boson occupation number becomes large. In the specific semiconductor double dot, the energy dependence of the inelastic rate suggests that acoustic phonons are coupled to the double dot piezoelectrically.  相似文献   

6.
We present a feasibility study of the semiconductor tunneling nano-structure consisting of multiple layers of two semiconductors along with a quantum dot layer for potential application in a cellular automata logic module. The elementary logic cell of the proposed CA module consists of a couple of tunnel diodes connected in series through a quantum dot. The charge of the quantum dot is considered as a logic variable. The local interconnections of nano-cells are achieved via the in-plane tunneling in the quantum dot layer. On the basis of approximate tunneling characteristics, multiple associative states and state dynamics are simulated. There are two ultimate advantages of the proposed CA scheme: (i) potential realization of a number of logic functions in one module, and (ii) reduced number of cell contacts required for read-in and read-out procedures (only edge cells have individual contacts). Examples of image processing using different logic functions are presented.  相似文献   

7.
We report a measurement of linear conductance through a series double dot as a function of the total double dot charge and the charge difference for interdot tunnel conductances between zero and one mode. The dots are defined by ten independently tunable electrostatic gates on the surface of a GaAs/AlGaAs heterostructure to allow separate adjustment of dot charge and interdot conductance. For weak interdot tunneling the measured double dot conductance agrees with a transport model in which each dot is individually governed by Coulomb blockade theory. As interdot tunnel conductance increases toward one mode, the measured conductance peak positions and shapes indicate both a relaxation of the charge quantization condition for individual dots and quantum mechanical charge sharing between dots. The results are in quantitative agreement with many body charge fluctuation theory.  相似文献   

8.
9.
When a semi-conductor structure containing strained layers such as quantum wells (QWs) or quantum dot layers is cleaved, the surface will relax outward in order to release built-in strain. This outward relaxation is directly linked to the composition of the strained layers, and can thus provide accurate information about the local composition of these layers. By using cross-sectional scanning tunneling microscopy (X-STM) it is possible to measure this outward relaxation. The measured height profiles, however, are also dependent on the chemical composition of the measured surface, resulting in an extra height contrast in the images. In order to analyze only the outward relaxation, it is necessary to suppress this latter chemical component in the STM measurements. This can be achieved by choosing the proper tunnel conditions.  相似文献   

10.
Taking account of the electron--electron (hole) and electron--hole interactions, the tunneling processes of the main quantum dot (QD) Coulomb-coupled with a second quantum dot embedded in n--n junction have been investigated. The eighteen resonance mechanisms involved in the tunneling processes of the system have been identified. It is found that the tunneling current depends sensitively on the electron occupation number in the second quantum dot. When the electron occupation number in the second dot is tiny, both the tunneling current peaks and the occupation number plateaus in the main QD are determined by the intra-resonance mechanism. The increase of the electron occupation number in the second dot makes the inter-resonance mechanism participate in the transport processes. The competition between the inter and intra resonance mechanisms persists until the electron occupation number in the second dot reaches around unity, leading to the consequence that the inter-resonance mechanisms completely dominate the tunneling processes.  相似文献   

11.
The giant Kerr nonlinearity with reduced linear and nonlinear absorption in a four-level quantum dot by employing the tunnel coupling is investigated. It is shown that by enhancement of tunnel coupling value the Kerr nonlinearity increases and at the same time linear and nonlinear absorption reduces at the long wavelength which is very important for communicational applications. Enhanced of Kerr nonlinearity in a double quantum dots is investigated. It is found that the electron tunneling has an essential role to reducing the linear absorption and increasing the Kerr nonlinearity at long wavelength.  相似文献   

12.
The tunneling of electrons that is limited by the Coulomb blockade effect in a single-electron transistor with a quantum dot based on a narrow GaAs/AlGaAs quantum wire suspended over a substrate is investigated. By means of a direct comparison experiment, the tunneling features associated with the separation of the quantum dot from the substrate are revealed. In addition to an increase in the charge energy (Coulomb gap), which reaches 170 K in temperature units, the dependence of this energy on the number of electrons in the quantum dot, which varies from zero to four, is observed. This dependence is explained by a change in the effective size of the dot due to the effect of the depleting gate voltage. Moreover, the additional blockade of tunneling that is different from the Coulomb blockade and is specific for suspended structures is observed. It is shown that this blockade is not associated with the dynamical effect of exciting local phonon modes and can be attributed to the change in the static elastic strains in the quantum wire that accompany the tunneling of an electron to/from the quantum dot.  相似文献   

13.
Magnetization measurements of Mn12 molecular nanomagnets with spin ground states of S=10 and S=19/2 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Spin-parity dependent tunneling is established by comparing the quantum phase interference of integer and half-integer spin systems.  相似文献   

14.
We present finite-bias transport measurements on a few-electron quantum dot. In the Coulomb-blockade regime, strong signatures of inelastic cotunneling occur which can directly be assigned to excited states observed in the nonblockaded regime. In addition, we observe structures related to sequential tunneling through the dot, occurring after it has been excited by an inelastic cotunneling process. We explain our findings using transport calculations within the real-time Green's function approach, including diagrams up to fourth order in the tunneling matrix elements.  相似文献   

15.
The time-dependent electron transport through a quantum dot with the additional over-dot (bridge) tunneling channel within the evolution operator technique has been studied. The microwave field applied to the leads and quantum dot has been considered and influence of the time-dependent shift of corresponding energy levels on the quantum dot charge and current flowing in the system, its time-averaged values and derivatives of the average current with respect to the gate and source–drain bias voltages have been investigated. The influence of the over-dot tunneling channel on the photon-assisted tunneling has been also studied.  相似文献   

16.
Exciton spin relaxation at low temperatures in InAlAs–InGaAs asymmetric double quantum dots embedded in AlGaAs layers has been investigated as a function of the barrier thickness by the time-resolved photoluminescence measurements. With decreasing the thickness of the AlGaAs layer between the dots, the spin relaxation time change from 3 ns to less than 500 ps. The reduction in the spin relaxation time was considered to originate from the spin-flip tunneling between the ground state in InAlAs dot and the excited states in InGaAs dot, and the resultant tunneling leads to the spin depolarization of the ground state in InGaAs dot.  相似文献   

17.
We have developed a technique capable of measuring the tunneling current into both localized and conducting states in a 2D electron system (2DES). The method yields I-V characteristics for tunneling with no distortions arising from low 2D in-plane conductivity. We have used the technique to determine the pseudogap energy spectrum for electron tunneling into and out of a 2D system and, further, we have demonstrated that such tunneling measurements reveal spin relaxation times within the 2DEG. Pseudogap: In a 2DEG in perpendicular magnetic field, a pseudogap develops in the tunneling density of states at the Fermi energy. We resolve a linear energy dependence of this pseudogap at low excitations. The slopes of this linear gap are strongly field dependent. No existing theory predicts the observed behavior. Spin relaxation: We explore the characteristics of equilibrium tunneling of electrons from a 3D electrode into a high mobility 2DES. For most 2D Landau level filling factors, we find that electrons tunnel with a single, well-defined tunneling rate. However, for spin-polarized quantum Hall states (ν=1, 3 and 1/3) tunneling occurs at two distinct rates that differ by up to two orders of magnitude. The dependence of the two rates on temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation creates a bottleneck for tunneling of electrons.  相似文献   

18.
We study current fluctuations in an interacting three-terminal quantum dot with ferromagnetic leads. For appropriately polarized contacts, the transport through the dot is governed by dynamical spin blockade, i.e., a spin-dependent bunching of tunneling events not present in the paramagnetic case. This leads, for instance, to positive zero-frequency cross correlations of the currents in the output leads even in the absence of spin accumulation on the dot. We include the influence of spin-flip scattering and identify favorable conditions for the experimental observation of this effect with respect to polarization of the contacts and tunneling rates.  相似文献   

19.
We report the use of single quantum dot structures as tips on a scanning tunneling microscope (STM). A single quantum dot structure with a diameter of less than 200 nm and a height of 2 μm was fabricated by reactive ion etching. This dot was placed on a 40 μm-high mesa and mounted on the tip of a STM. The topography of large structures such as quantum wires or gold test substrates is clearly resolved with such a tip. To check the transport properties of the tip, quantum dot arrays were fabricated on resonant tunneling double barrier structures using the same process parameters. Conventional tunneling spectroscopy clearly resolved the 0D states in our samples. Using a metal substrate as second electrode such STM tips can be used to perform high resolution energy spectroscopy on single dots and free standing wire structures.  相似文献   

20.
Dynamic storage and retrieval of a weak infrared (IR)-light pulse are investigated theoretically with feasible parameters in an asymmetric double quantum dot system, a quantum dot molecule (QDM). It is shown that, with a voltage-controlled tunneling, we are able to store and retrieve the IR signal pulse in this three-subband QDM medium by slowly switching off and on the tunneling. The scheme proposed may open up the electrical controllability of quantum optical information storage and retrieval, which is expected to be useful in quantum information science in an asymmetric double quantum dot controlled by voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号