首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Measurements of the advancing contact angle (theta) were carried out for aqueous solution of p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycol), Triton X-100 (TX100), and Triton X-165 (TX165) mixtures on glass. The obtained results indicate that the wettability of glass depends on the concentration and composition of the surfactant mixture. The relationship between the contact angle and concentration suggests that the lowest wettability corresponds to the concentration of TX100 and TX165 and their mixture near the critical micelle concentration (CMC). The minimum of the dependence between the contact angle and composition of the mixtures for each concentration at a monomer mole fraction of TX100, alpha, equals 0.2 and 0.4 points to synergism in the wettability of the glass surface. In contrast to the results of Zisman ( Zisman, W. A. In Contact Angle, Wettability and Adhesion; Gould, R. F., Ed.; Advances in Chemistry Series 43; American Chemical Society Washington, DC, 1964; p 1 ) there was no linear dependence between cos theta and the surface tension of aqueous solutions of TX100 and TX165 mixtures for all studied systems, but a linear dependence exists between the adhesional tension and surface tension for glass, practically, in the whole concentration range of surfactants studied, the slopes of which are positive in the range of 0.43-0.67. These positive slopes indicate that the interactions between the water molecules and glass surface might be stronger than those between the surface and surfactant molecules. So, the surface excess of surfactant concentration at the glass-water interface is probably negative, and the possibility for surfactant to adsorb at the glass/water film-water interface is higher than that at the glass-water interface. This conclusion is confirmed by the values of the work of adhesion of "pure" surfactants, aqueous solutions of surfactants, and aqueous solutions of their mixtures to the glass surface and by the negative values of glass-water interfacial tension determined from the Young equation in the range of surfactant concentrations corresponding to their unsaturated monolayer at the water-air interface.  相似文献   

2.
Measurements of the advancing contact angle (theta) were carried out for an aqueous solution of p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycol)s (Triton X-100 (TX100) and Triton X-165 (TX165) mixtures) on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE depends on the concentration and composition of the surfactant mixture. The minimum of the dependence between the contact angle and composition of the mixtures for PTFE for each concentration at a monomer mole fraction of TX100, alpha = 0.8, points to synergism in the wettability of PTFE. This effect was confirmed by the negative values of interaction parameters calculated on the basis of the contact angle and by the Rosen approach. In contrast to Zisman, there was no linear dependence between cos theta and the surface tension of an aqueous solution of TX100 and TX165 mixtures for all studied systems, but a linear dependence existed between the adhesional tension and surface tension for PTFE over the whole concentration range, the slope of which was -1, indicating that the surface excess of the surfactant concentration at the PTFE-solution interface was the same as that at the solution-air interface for a given bulk concentration. Similar values of monomer mole fractions of the surfactants at water-air and PTFE-water interfaces calculated on the basis of the surface tension and contact angles showed that adsorption at these two interfaces was the same. It was also found that the work of adhesion of an aqueous solution of surfactants to the PTFE surface did not depend on the type of surfactant and its concentration. This means that for the studied systems the interaction across the PTFE-solution interface was constant and was largely of Lifshitz-van der Waals type. On the basis of the surface tension of PTFE, the Young equation, and the thermodynamic analysis of the adhesion work of an aqueous solution of surfactant to the polymer surface, it was found that in the case of PTFE the changes in the contact angle as a function of the mixture concentration of two nonionic surfactants resulted only from changes in the polar component of the solution surface tension.  相似文献   

3.
Thermodynamic studies of mixed ionic/nonionic surfactant systems   总被引:2,自引:0,他引:2  
Mixtures of alkyltrimethylammonium bromide (CnTAB, n=12, 14, 16, 18) and Triton X-100 were studied at a range of mole fractions of ionic surfactant per nonionic surfactant. For each mixture, the cmc obtained from surface tension measurements differed from that obtained using potentiometry. The behavior of these mixed-surfactant systems showed three different regions with increasing total surfactant concentration. From the surface tension and potentiometry data, we obtained the free monomer concentration of ionic surfactant (mi), the micellar mole fraction of surfactant (xi), and the degree of dissociation (alpha) of ionic surfactant. We also obtained the free monomer concentration of Triton X-100 (m2) using PFG-NMR technique. A new equation was introduced to evaluate the activity coefficient in the micellar phase. The excess free energy (GE) and the synergetic parameters of mixtures were determined at various mole fractions of CnTAB/Triton X-100. Finally, the complexity of the synergism parameters was investigated.  相似文献   

4.
Measurements were made of the surface tension of the aqueous solutions of p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycols) having 10 oxyethylene groups in the molecule (Triton X-100, TX100) and cetyltrimethylammonium bromide (CTAB) with Zonyl FSN-100 (FC6EO14, FC1) as well as with Zonyl FSO-100 (FC5EO10, FC2) ternary mixtures. The obtained results were compared to those provided by the Fainerman and Miller equation and to the values of the solution surface tension calculated, based on the contribution of a particular surfactant in the mixture to the reduction of water surface tension. The changes of the aqueous solution ternary surfactants mixture surface tension at the constant concentration of TX100 and CTAB mixture at which the water surface tension was reduced to 60 and 50 mN/m as a function of fluorocarbon surfactant concentration, were considered with regard to the composition of the mixed monolayer at the water-air interface. Next, this composition was applied for the calculation of the concentration of the particular surfactants in the monolayer using the Frumkin equation. On the other hand, the Gibbs surface excess concentration was determined only for the fluorocarbon surfactants. The tendency of the particular surfactants to adsorb at the water-air interface was discussed, based on the Gibbs standard free energy of adsorption which was determined using different methods. This energy was also deduced, based on the surfactant tail surface tension and tail-water interface tension.  相似文献   

5.
利用表面张力法, 研究了非离子表面活性剂Triton X-100和离子表面活性剂十六烷基三甲基溴化铵(CTAB)混合体系在混合极性溶剂乙二醇/水(乙二醇的体积分数分别为5%、10%和20%)中的热力学性质和胶团化行为. 结果表明, 混合体系在乙二醇水溶液中存在协同效应, 临界胶束浓度随乙二醇含量的增加而增大. 利用Rubingh和Maeda模型计算了混合物中各组分在胶团相中的组成、相互作用参数以及自由能的贡献. 在实验研究的乙二醇浓度范围内, 发现该非离子/离子混合体系在离子组分摩尔分数约为0.3时, 协同效应最强.  相似文献   

6.
Contact angle (θ) measurements on poly(tetrafluoroethylene) (PTFE) and polymethyl methacrylate (PMMA) surface were carried out for the systems containing ternary mixtures of surfactants composed of: p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycols), Triton X-100 (TX100), Triton X-165 (TX165) and Triton X-114 (TX114), and fluorocarbon surfactants, Zonyl FSN100 (FSN100) and Zonyl FSO100 (FSO100). The aqueous solutions of ternary surfactant mixtures were prepared by adding TX114, FSN100 or FSO100 to binary mixtures of TX100+TX165, where the synergistic effect in the reduction of the surface tension of water (γ(LV)) was determined. From the obtained contact angle values, the relationships between cosθ, the adhesion tension and surface tension of solutions, cosθ and the reciprocal of the surface tension were determined. On the basis of these relationships, the correlation between the critical surface tension of PTFE and PMMA wetting and the surface tension of these polymers as well as the work of adhesion of aqueous solutions of ternary surfactant mixtures to PTFE and PMMA surface were discussed. The critical surface tension of PTFE and PMMA wetting, γ(C), determined from the contact angle measurements of aqueous solutions of surfactants including FSN100 or FSO100 was also discussed in the light of the surface tension changes of PTFE and PMMA under the influence of film formation by fluorocarbon surfactants on the surface of these polymers. The γ(C) values of the studied polymeric solids were found to be different for the mixtures composed of hydrocarbon surfactants in comparison with those of hydrocarbon and fluorocarbon surfactants. In the solutions containing fluorocarbon surfactants, the γ(C) values were different taking into account the contact angle in the range of FSN100 and FSO100 concentration corresponding to their unsaturated monolayer at water-air interface or to that saturated.  相似文献   

7.
8.
Measurements of the advancing contact angle (theta) were carried out for aqueous solution of cetyltrimethylammonium bromide (CTAB) and p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycol), Triton X-100 (TX100) mixtures on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE depends on the concentration and composition of the surfactants mixture. There is a minimum of the dependence between contact angle and composition of the mixtures for PTFE for each concentration at a monomer mole fraction of CTAB, alpha, equal 0.2, which points to the synergism in the wettability of PTFE. In contrast to Zisman, there is no linear dependence between costheta and the surface tension of aqueous solution of CTAB and TX100 mixtures for all studied systems, but a linear dependence exists between the adhesional tension and surface tension for PTFE in the whole concentration range, the slope of which is -1, that suggests that the surface excess of the surfactant concentration at the PTFE-solution interface is the same as that at the solution-air interface for a given bulk concentration. It was also found that the work of adhesion of aqueous solution of surfactants to PTFE surface did not depend on the type of surfactant and its concentration. It means that the interactions across PTFE-solution interface were constant for the systems studied, and they were largely Lifshitz-van de Waals type. On the basis of the surface tension of PTFE and the Young equation and thermodynamic analysis of the adhesion work of aqueous solution of surfactant to the polymer surface it was found that in the case of PTFE the changes of the contact angle as a function of the mixture of nonionic and cationic surfactants concentration resulted only from changes of the polar component of solution surface tension.  相似文献   

9.
Measurements of the surface tensions, densities and viscosities of aqueous solutions of Triton X-100 (TX-100) and rhamnolipid (RL) mixtures, at constant concentration of RL or TX-100, were carried out. The measured values of the surface tension were compared to those determined using different theoretical models and on the basis of the surface tension of aqueous solutions of individual surfactants. From the surface tension isotherms, the Gibbs surface excess concentration of TX-100 and RL, the composition of surface layer and the standard Gibbs free energy of adsorption at the water–air interface were determined. Moreover, on the basis of surface tension, density and viscosity isotherms, the CMC of surfactants mixtures were evaluated. From the density isotherms, apparent and partial molar volumes of TX-100 and RL were also determined. These volumes were compared to those calculated from the sizes of TX-100 and RL molecules. There was observed a synergetic effect in the reduction of water surface tension and micelle formation, which was confirmed by the intermolecular interactions parameter. In the case of micelle formation, this effect was discussed based on the standard Gibbs free energy of micellization as well as of TX-100 and RL mixing in the micelles. The synergism of TX-100 and RL mixtures in the reduction of water surface tension and micelle formation was explained on the basis of electrostatic interactions between the hydrophilic part of TX-100 and RL molecules; this was supported by pH measurements.  相似文献   

10.
The interaction in two mixtures of a nonionic surfactant Triton-X-100 (TX-100) and different ionic surfactants was investigated. The two mixtures were TX-100/sodium dodecyl sulfate (SDS) and TX-100/cetyltrimethylammonium bromide (CTAB) at molar fraction of TX-100, αTX-100 = 0.6. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax), and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were also determined. Mixtures of both TX-100/SDS and TX-100/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.  相似文献   

11.
Mixed micelle formation and synergistic interactions of binary surfactant combinations of sodium nonylphenol polyoxyethylene ether sulfate (NPES) with typical surfactants such as sodium dodecyl sulfate (SDS), Triton X-100 (TX100), cetyl trimethyl ammonium bromide (CTAB), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at 25 degrees C in the presence of NaCl have been investigated. The critical micelle concentration of the binary mixtures has been quantitatively estimated by steady-state fluorescence measurements. The micellar characteristics such as composition, activity coefficients, and mutual interaction parameters have been estimated following different theoretical treatments. Investigation on the micellization and synergistic interaction of NPES with four kinds of surfactants showed that the behavior of the binary mixture deviated from the ideal state. The analysis revealed that the interaction parameter values (beta) varied with variation of solvent composition. Besides the strong electrostatic attraction between the oppositely charged surfactant NPES-CTAB mixture, the interaction between NPES and SDS also showed far more deviation from ideal behavior than that of TX100 and AOT. The reason for the synergism is also discussed and the results show that an ionic and a nonionic surfactant character existed concurrently in NPES due to the combination of a sulfate group and polyoxyethylene as a hydrophilic moiety. Zeta potential and diffusion coefficient measurements of micelles confirmed the synergistic interaction between the binary surfactants.  相似文献   

12.
On the basis of surface tension values of the aqueous solution of cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) mixtures measured at 293 K as a function of CTAB or TX-100 concentration at constant TX-100 or CTAB concentration, respectively, the real surface area occupied by these surfactants at the water–air interface was established which is inaccessible in the literature. It appeared that at the concentration of the CTAB and TX-100 mixture in the bulk phase corresponding to the unsaturated monolayer at the water air-interface this area is the same as in the monolayer formed by the single surfactant at the same concentration as in the mixture. In the saturated mixed monolayer at this interface the area occupied by both surfactants is lower than that in the single surfactant monolayer corresponding to the same concentration in the aqueous solution. However, the decrease of the CTAB adsorption is lower than that of TX-100 and the total area occupied by the mixture of surfactants is also lower than that of the single one. The area of particular surfactants in the mixed saturated monolayer changes as a function of TX-100 and CTAB mixture concentration and at the concentrations close to CMC or higher the area occupied by both surfactants is the same. The changes of the composition of the mixed surface monolayer are connected with the synergetic effect in the reduction of the water surface tension by the adsorption of CTAB and TX-100 at the water–air interface. This effect was confirmed by the values of the standard Gibbs free energy of adsorption of both individual surfactants and their mixtures with different compositions in the bulk phase determined by using the Langmuir equation if RT instead of nRT was applied in this equation.  相似文献   

13.
Dependences of the surface tension of aqueous solutions of cationic (dodecylpyridinium bromide) and nonionic (Tween 80, Triton X-100) surfactants and their mixtures on total surfactant concentration and solution composition were studied. The values of critical micellization concentration (CMC) and excess free energy of adsorption were determined from tensiometric measurements. Based on Rubingh–Rosen model (approximation of the theory of regular solutions), the compositions of micelles and adsorption layers at the solution–air interface as well as parameters of interaction between the molecules of cationic and nonionic surfactants were calculated for the systems indicated above. It was established that, in the case of surfactant mixtures with considerable difference in the CMCs, the micelles of individual surfactant with lower CMC value are formed. The effect of negative deviation from the ideality during the adsorption of surfactants from mixed solutions at the solution–air interface was disclosed. It was shown that the interaction energy depends significantly on the composition of mixed systems.  相似文献   

14.
The interaction energy between hydrophobic SiO2 particles in aqueous solutions of a cationic surfactant (dodecylpyridinium bromide, DDPB), a nonionic surfactant (Triton X-100, TX-100), and their mixed solutions was measured as a function of concentration. Synergism has been observed in mixed surfactant solutions: the surfactant concentration required for achieving the set interaction energy in the mixed solutions was lower than in the solutions of the individual surfactants. The molecular interaction parameters in surfactant mixtures were calculated using the Rosen model. Chain-chain interactions between nonionic and cationic surfactants were suggested as the main reason for the synergism.  相似文献   

15.
Sodium dodecylsulfate and cetyltrimethylammonium bromide mixtures are important catanionic systems, as they have an inherent tendency to form vesicle structures. Despite extensive studies on the phase behavior and microstructures, there is dearth of basic information on the aggregation and adsorption behavior of this mixed system. In this work the critical micelle concentration, surface tension reduction effectiveness, surface excess, mixed micelle and monolayer compositions, activity coefficients, interaction parameters, counterion binding and Gibbs energy terms of this mixed system are determined by measuring its surface tension and conductance as a function of composition. The dependence of mixed micelle composition on surfactant concentration has been successfully demonstrated.  相似文献   

16.
For the mixed system of nonyl-N-methylglucamine (MEGA9) with sodium perfluorooctanoate (SPFO), the critical micelle concentrations (CMC) at atmosphreic pressure and 30°C were determined from measurement of surface tension, and those at high pressures were determined by the electroconductivity method at mole fractions of MEGA9 up to 0.6. All of MEGA9-SPFO mixed systems have been found to have a surface activity much greater than the respective pure systems, i.e., a synergism of surface activity caused by mixing MEGA9 and SPFO. The mixing reduces the pressure dependence of the CMC. This suggests that this combination is useful when it is desirable for a surfactant solution to be independent of pressure. The composition of the mixed micellar phase has been estimated by applying the Motomura equation. The Gibbs energy of the mixed micelle formation has also been calculated as a function of mole fraction of a surfactant in the surfactant mixture.To whom correspondence should be addressed.  相似文献   

17.
Equilibrium interfacial tension measurements at 25.0 °C of the toluene + water system with two widely used surfactants, octylphenol decaethylene glycol ether (Triton X-100) and cetyl trimethyl ammonium bromide (CTAB) having concentrations much lower than their CMC were performed. According to the obtained parameters from the Szyszkowski equation, Triton has higher adsorption tendency than of CTAB. The results obtained for surfactants mixtures are analyzed by the theory of non-ideal interactions in binary mixtures (NIBMs) and the interfacial composition and the interaction parameter in the mixed adsorbed monolayer are determined. The attractive interaction shows a maximum value at nearly equal surfactants bulk mole fraction. The synergism is achieved for Triton bulk mole fractions of 0.30 and higher, and the highest degree of synergism (40.6%) is found for the bulk mole fraction of 0.52 with the lowest investigated constant interfacial tension of 28.0 mN m−1. A correlation was developed for variation of the interaction parameter with bulk mole fraction.  相似文献   

18.
Mixed micelles formed by zwitterionic surfactant dimethyldodecylammniopropane sulfonate and short-chain phospholipid 1,2-diheptanoyl-sn-glycero-3-phosphocholine in different proportions in an aqueous medium have been studied physicochemically at an air/water interface and in the bulk by using interfacial tension and pyrene fluorescence intensity measurements, respectively. The critical micellar concentration and free energies of micellization and of interfacial adsorption have been determined. The interfacial study reveals that a mixed monolayer is formed at the air/water interface by the adsorption of surfactant and phospholipid monomers. This has been confirmed by evaluating the interfacial parameters; the maximum surface excess, the minimum area per molecule of a surface-active compound, and the Gibbs surface excess related to surface pressure. The nonideality of mixing, expressed in the terms of the regular solution interaction parameter, #, has negative values over the whole mole fraction range. The negative # values indicate the mutual synergism between the surfactant and phospholipid monomers. The equilibrium distribution of components between micelle and monomer phases was evaluated using a theoretical treatment based on excess thermodynamics quantities evaluated by Motomura's formulation.  相似文献   

19.
The surface tension of aqueous solutions of tetraethyleneglycol octyl ether (C8E4) and octyl-β-d-maltopyranoside (OM) mixture was measured as a function of the total molality of surfactants and the composition of OM under atmospheric pressure at 298.15 K by drop volume technique. The results of surface tension measurements were analyzed by originally developed thermodynamic equations, then phase diagrams of adsorption and micelle formation were constructed. From the analysis of the surface tension data, it was found that the C8E4 and OM molecules interact attractively in the adsorbed film and the excess Gibbs energy of adsorption can be compared with those observed in typical cationic–nonionic surfactant systems; nevertheless, they are mixed almost ideally in the mixed micelle. Judging from a negative excess surface area calculated by differentiating the excess Gibbs energy by the surface tension, we concluded that the attraction between C8E4 and OM molecules is a short-range one originated in the hydrogen bonding between them which favors the planar configuration.  相似文献   

20.
研究了烷基苯磺酸盐Gemini表面活性剂Ia与非离子表面活性剂C10E6溶液混合胶团中分子间的相互作用. 通过表面张力法测定了Ia 和C10E6不同比例不同温度下的临界胶束浓度(cmc). 结果表明, 两种表面活性剂以任何比例复配的cmc比单一表面活性剂的cmc都低, 表现出良好的协同效应. 传统型非离子表面活性剂C10E6、Gemini表面活性剂Ia及混合物的cmc都随着温度升高而降低. 而且, 任何配比的混合胶团中两种表面活性剂分子间的相互作用参数β都是负值, 这说明两种表面活性剂在混合胶团中产生了相互吸引的作用. 混合表面活性剂体系的胶团聚集数比单一Ia的大, 但比单一C10E6的小. 向Gemini表面活性剂Ia胶束中加入非离子表面活性剂C10E6会使胶束的微观极性变小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号