首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 265 毫秒
1.
张毅 《力学学报》2020,52(6):1765-1773
自然界和工程技术领域存在大量的非线性问题,它们通常需要用非线性微分方程来描述. 守恒量在微分方程的求解、约化和定性分析方面发挥重要作用. 因此,研究非线性动力学方程的近似守恒量具有重要意义. 文章利用 Noether 对称性方法研究弱非线性动力学方程的近似守恒量. 首先,将弱非线性动力学方程化为一般完整系统的 Lagrange 方程,在 Lagrange 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 其次,将弱非线性动力学方程化为相空间中一般完整系统的 Hamilton 方程,在 Hamilton 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 再次,将弱非线性动力学方程化为广义 Birkhoff 方程,在 Birkhoff 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 最后,以著名的 van der Pol 方程,Duffing 方程以及弱非线性耦合振子为例,分析三个不同框架下弱非线性系统的 Noether 准对称性与近似 Noether 守恒量的计算. 结果表明:同一弱非线性动力学方程可以化为不同的一般完整系统或不同的广义 Birkhoff 系统;Hamilton 框架下的结果是 Birkhoff 框架的特例,而 Lagrange 框架下的结果与 Hamilton 框架的等价. 利用 Noether 对称性方法寻找弱非线性动力学方程的近似守恒量不仅方便有效,而且具有较大的灵活性.   相似文献   

2.
Zhang Yi 《力学学报》1957,52(6):1765
自然界和工程技术领域存在大量的非线性问题,它们通常需要用非线性微分方程来描述. 守恒量在微分方程的求解、约化和定性分析方面发挥重要作用. 因此,研究非线性动力学方程的近似守恒量具有重要意义. 文章利用 Noether 对称性方法研究弱非线性动力学方程的近似守恒量. 首先,将弱非线性动力学方程化为一般完整系统的 Lagrange 方程,在 Lagrange 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 其次,将弱非线性动力学方程化为相空间中一般完整系统的 Hamilton 方程,在 Hamilton 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 再次,将弱非线性动力学方程化为广义 Birkhoff 方程,在 Birkhoff 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 最后,以著名的 van der Pol 方程,Duffing 方程以及弱非线性耦合振子为例,分析三个不同框架下弱非线性系统的 Noether 准对称性与近似 Noether 守恒量的计算. 结果表明:同一弱非线性动力学方程可以化为不同的一般完整系统或不同的广义 Birkhoff 系统;Hamilton 框架下的结果是 Birkhoff 框架的特例,而 Lagrange 框架下的结果与 Hamilton 框架的等价. 利用 Noether 对称性方法寻找弱非线性动力学方程的近似守恒量不仅方便有效,而且具有较大的灵活性.  相似文献   

3.
本文研究 Birkhoff 系统和广义 Birkhoff 系统平衡稳定性的动力学控制. 首先建立系统的运动方程和平衡方程. 其次,研究 Birkhoff 系统中控制参数出现在 Birkhoff 函数中平衡稳 定性的动力学控制. 方法是通过选取控制参数使得 Birkhoff 函数 $B$ 成为定号函数,而其时间导数 $\dot {B}$ 为与 $B$ 反号的常号函数. 再次,研究广义 Birkhoff 系统平衡稳定性的动力学控制,通过选取 Birkhoff 函数或附加项中包含控制参数的方法,使得 Birkhoff 函数是定号函数,而其时间导数为反号的常号函数,从而控制系统的平衡稳定性. 最后举例说明结果的应用.   相似文献   

4.
研究判定非自治Birkhoff系统稳定性的广义组合梯度方法.首先,给出非自治Birkhoff系统和非自治广义Birkhoff系统的运动微分方程;其次,给出一类将广义梯度系统和广义斜梯度系统组合而成的广义组合梯度系统,并讨论广义组合梯度系统的一些性质;最后,将非自治Birkhoff系统和非自治广义Birkhoff系统在一定条件下表示成广义组合梯度系统,并用广义组合梯度系统的性质研究了这两类Birkhoff系统的稳定性.举例说明结果的应用.  相似文献   

5.
本文研究 Birkhoff 系统和广义 Birkhoff 系统平衡稳定性的动力学控制. 首先建立系统的运动方程和平衡方程. 其次,研究 Birkhoff 系统中控制参数出现在 Birkhoff 函数中平衡稳 定性的动力学控制. 方法是通过选取控制参数使得 Birkhoff 函数 $B$ 成为定号函数,而其时间导数 $\dot {B}$ 为与 $B$ 反号的常号函数. 再次,研究广义 Birkhoff 系统平衡稳定性的动力学控制,通过选取 Birkhoff 函数或附加项中包含控制参数的方法,使得 Birkhoff 函数是定号函数,而其时间导数为反号的常号函数,从而控制系统的平衡稳定性. 最后举例说明结果的应用.  相似文献   

6.
董孟峰  陈向炜 《力学季刊》2019,40(3):543-548
研究判定广义Birkhoff系统稳定性的三重组合梯度方法.首先,给出4类三重组合梯度系统的定义和微分方程;其次,得到广义Birkhoff系统成为三重组合梯度系统的条件,从而将广义Birkhoff系统化成三重组合梯度系统;最后,利用组合梯度系统的性质来研究系统的稳定性,举例说明结果的应用.  相似文献   

7.
张毅  薛纭 《力学季刊》2003,24(2):280-285
本文提出了构造Birkhoff系统守恒律的积分因子方法。首先,给出了Birkhoff方程的积分因子的定义,研究了Birkhoff系统的守恒量存在必要条件;其次,建立了系统的积分因子与守恒律的对应关系,并给出了用于确定积分因子的广义Killing方程,最后,建立了守恒定理的逆定理。文末,举例说明结果的应用。  相似文献   

8.
20世纪90年代以来,分数阶微积分理论与方法已被广泛地应用到自然科学和社会科学的各个领域,动力学与控制是其中的一个重要应用领域.为了进一步研究分数阶力学系统,本文基于Riemann-Liouville分数阶导数,讨论了分数阶Birkhoff系统Noether对称性的摄动与绝热不变量问题.首先,给出分数阶Birkhoff系统的运动微分方程及精确不变量;其次,给出绝热不变量的定义,并研究分数阶Birkhoff系统的绝热不变量;文末举例说明结果的应用.  相似文献   

9.
陈向炜  张晔  梅凤翔 《力学学报》2017,49(1):149-153
Birkhoff系统是一类比Hamilton系统更广泛的约束力学系统,可在原子与分子物理,强子物理中找到应用.非定常约束力学系统的稳定性研究是重要而又困难的课题,用构造Lyapunov函数的直接方法来研究稳定性问题有很大难度,其中如何构造Lyapunov函数是永远的开放问题.本文给出一种间接方法,即梯度系统方法.提出一类梯度系统,其矩阵是负定非对称的,这类梯度系统的解可以是稳定的或渐近稳定的.梯度系统特别适合用Lyapunov函数来研究,其中的函数V通常取为Lyapunov函数.列出广义Birkhoff系统的运动方程,广义Birkhoff系统是一类广泛约束力学系统.当其中的附加项取为零时,它成为Birkhoff系统,完整约束系统和非完整约束系统都可纳入该系统.给出广义Birkhoff系统的解可以是稳定的或渐近稳定的条件,进一步利用矩阵为负定非对称的梯度系统构造出一些解为稳定或渐近稳定的广义Birkhoff系统.该方法也适合其他约束力学系统.最后用算例说明结果的应用.  相似文献   

10.
研究双参数对广义Birkhoff系统稳定性的影响.分别给出广义Birkhoff系统和梯度系统的微分方程,得到广义Birkhoff系统转化成梯度系统的条件.在该条件下把广义Birkhoff系统化成梯度系统,利用梯度系统的性质研究了广义Birkhoff系统的稳定性随双参数变化关系.结果表明,随双参数变化广义Birkhoff系统的平衡稳定性可能是稳定的,或渐进稳定的,也可能是不稳定的,在参数平面上划出稳定性区域和不稳定区域.举例说明结果的应用.  相似文献   

11.
This paper focuses on studying the integration method of a generalized Birkhoffian system.The method of variation on parameters for the dynamical equations of a generalized Birkhoffian system is presented.The procedure for solving the problem can be divided into two steps:the first step,a system of auxiliary equations is constructed and its general solution is given;the second step,the parameters are varied,and the solution of the problem is obtained by using the properties of generalized canonical transformation.The method of variation on parameters for the generalized Birkhoffian system is of universal significance,and we take a nonholonomic system and a nonconservative system as examples to illustrate the application of the results of this paper.  相似文献   

12.
The theory of time scales, which unifies continuous and discrete analysis, provides a powerful mathematical tool for the study of complex dynamic systems. It enables us to understand more clearly the essential problems of continuous systems and discrete systems as well as other complex systems. In this paper, the theory of generalized canonical transformation for second-order Birkhoffian systems on time scales is proposed and studied, which extends the canonical transformation theory of Hamilton canonical equations. First, the condition of generalized canonical transformation for the second-order Birkhoffian system on time scales is established.Second, based on this condition, six basic forms of generalized canonical transformation for the second-order Birkhoffian system on time scales are given. Also, the relationships between new variables and old variables for each of these cases are derived. In the end, an example is given to show the application of the results.  相似文献   

13.
For a Birkhoffian system, a new Lie symmetrical method to find a conserved quantity is given. Based on the invariance of the equations of motion for the system under a general infinitesimal transformation of Lie groups, the Lie symmetrical determining equations are obtained. Then, several important relationships which reveal the interior properties of the Birkhoffian system are given. By using these relationships, a new Lie symmetrical conservation law for the Birkhoffian system is presented. The new conserved quantity is constructed in terms of infinitesimal generators of the Lie symmetry and the system itself without solving the structural equation which may be very difficult to solve. Furthermore, several deductions are given in the special infinitesimal transformations and the results are reduced to a Hamiltonian system. Finally, one example is given to illustrate the method and results of the application.  相似文献   

14.
张毅 《力学学报》2017,(3):693-702
应用分数阶模型可以更准确地描述和研究复杂系统的动力学行为和物理过程,同时Birkhoff力学是Hamilton力学的推广,因此研究分数阶Birkhoff系统动力学具有重要意义.分数阶Noether定理揭示了Noether对称变换与分数阶守恒量之间的内在联系,但是当变换拓展为Noether准对称变换时,该定理的推广遇到了很大的困难.本文基于时间重新参数化方法提出并研究Caputo导数下分数阶Birkhoff系统的Noether准对称性与守恒量.首先,将时间重新参数化方法应用于经典Birkhoff系统的Noether准对称性与守恒量研究,建立了相应的Noether定理;其次,基于分数阶Pfaff作用量分别在时间不变的和一般单参数无限小变换群下的不变性给出分数阶Birkhoff系统的Noether准对称变换的定义和判据,基于Frederico和Torres提出的分数阶守恒量定义,利用时间重新参数化方法建立了分数阶Birkhoff系统的Noether定理,从而揭示了分数阶Birkhoff系统的Noether准对称性与分数阶守恒量之间的内在联系.分数阶Birkhoff系统的Noether对称性定理和经典Birkhoff系统的Noether定理是其特例.最后以分数阶Hojman-Urrutia问题为例说明结果的应用.  相似文献   

15.
Second-order dynamical systems are of paramount importance as they arise in mechanics and many applications. It is essential to have workable explicit criteria in terms of the coefficients of the equations to effect reduction and solutions for such types of equations. One important aspect is linearization by invertible point transformations which enables one to reduce a non-linear system to a linear system. The solution of the linear system allows one to solve the non-linear system by use of the inverse of the point transformation. It was proved that the n-dimensional system of second-order ordinary differential equations obtained by projecting down the system of geodesics of a flat (n+1)-dimensional space can be converted to linear form by a point transformation. This is a generalization of the Lie linearization criteria for a scalar second-order equation. In this case it is of the maximally symmetric class for a system and the linearizing transformation as well as the solution can be directly written down. This was explicitly used for two-dimensional dynamical systems. The criteria were written down in terms of the coefficients and the linearizing transformation allowed for the general solution of the original system. Here the work is extended to a three-dimensional dynamical system and we find explicit criteria, including the linearization test given in terms of the coefficients of the cubic in the first derivatives of the system and the construction of the transformations, that result in linearization. Applications to equations of classical mechanics and relativity are given to illustrate our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号