首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
TheE R=126, 272 and 291 keV resonances in the21Ne(p, γ)22Na reaction have been investigated with a high-energy-resolution ion beam. TheE R=272 keV resonance was found to consist of two states separated by (888+5) eV, where the lower (higher) energy member is a high-spin (low-spin) state. All four resonances have widths less than a few eV, which is an improvement of nearly two orders of magnitude below previously reported limits. The influence of atomic effects on the determination of the correct value for the resonance energy is examined.  相似文献   

2.
The energy transferred to a copper surface by bombardment with Xe+, Ar+, and He+ ions with kinetic energies in the range 100–4000 eV has been studied by our group in previous experiments. There were significant experimental uncertainties for that data at energies below about 200 eV. The present investigation overlaps the previous work, extends the energy range to 10 eV, and includes data for Ne+. Particular emphasis is placed on the energy range below 200eV. A specially designed ion source was employed in these experiments. A polycrystalline copper film deposited onto a highly sensitive calorimeter was used as the target material. The results show that the Xe+ ion deposits more than 97% of its energy over the entire range investigated whereas the lighter ions deposit a decreasing fraction of their energy below about 1 keV. The decrease is largest for the lightest ion (He+). In all cases the deposited energy is about or more than 70% of the incident energy. It will be shown that the present results are in agreement with previous measurements for copper and are qualitatively in good agreement with computer calculations using the TRIM.SP code.On leave from: Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich GmbH, W-5170 Jülich, Fed. Rep. Germany  相似文献   

3.
The true potential energy curves have been constructed for the ground and excited electronic states of SiCl by the method of Lakshman and Rao. The dissociation energy of the ground state has been estimated by fitting the Hulburt-Hirschfelder function to the true potential energy curves. The dissociation energy thus obtained is 33,500 cm-1 (4.15 eV), which is in good agreement with the value of 4.5±0.5 eV reported by Gaydon.  相似文献   

4.
Artificial diamond is an ideal material for high power, high voltage electronic devices, and for engineering use in extreme environments. Diamond process development requires parallel development in characterization techniques such as ultra low energy SIMS (uleSIMS), especially in the ability to depth profile for impurities and dopants at high depth resolution.As a contribution to the background knowledge required, we have measured the sputter yields of single crystal high pressure high temperature (HPHT) diamond using O2+, Cs+ and Ar+ primary ions in the energy range 300 eV to 2 keV. We compare these with yields for silicon and GaAs. We show that the erosion rates with oxygen are ∼10 times what would be expected from ballistic processes and essentially energy independent in the measured range. This result agrees with the anomalously high sputter yield observed in the ion etching context. Conversely, positive ion yields for elements such as boron are very low in comparison with silicon. This points to a reactive ion etching process liberating CO or CO2 rather than sputtering as the principal erosion process.This is both problematic and beneficial for SIMS analysis. Oxygen can be used to reach buried structures in diamond efficiently, and the effects of the near-normal incidence beam are planarizing as they are in silicon. Conversely, since positive ion yields are low, alternative probes or strategies must be found for high sensitivity profiling of electropositive elements.  相似文献   

5.
Energy losses of 200 eV to 2 keV electrons reflected from a disordered EuO(100) crystal show a bulk plasmon loss consistent with just less than six “quasi free” electrons per EuO unit, and 5p → nd resonance losses above the 5p threshold. The ratio of intensity of the 4d10 4fn0 → 4d9 4fn+1 “giant resonance” loss at 142 eV to the corresponding direct recombination feature varies with energy, while the direct recombination and related Auger channels show similar energy dependence.  相似文献   

6.
In the 11.8–13.8 eV energy range differential threshold and energy loss spectra of electrons scattered by N2 molecules have been obtained at an incident energy of 14.3 eV and with a 30 meV experimental resolution. The study of the angular behaviour of the observed peaks permits us to distinguish between singlet-singlet and singlet-triplet transitions. The predicted F3Πu and G3Πu Rydberg states are observed. Also some levels of unknown triplet states are seen at 13.155, 13.395 and 13.635 eV.  相似文献   

7.
The use of graphite as a moderator in a low temperature thermal nuclear reactor is restricted due to accumulation of energy caused by displacement of atoms by neutrons and high energetic particles. Thermal transients may lead to a release of stored energy that may raise the temperature of the fuel clad above the design limit. Disordered carbon is thought to be an alternative choice for this purpose. Two types of disordered carbon composites, namely, CB (made up of 15 wt. % carbon black dispersed in carbonized phenolic resin) and PAN (made up of 20 vol. % chopped polyacrylonitrile carbon fibre dispersed in carbonized phenolic resin matrix) have been irradiated with 145 MeV Ne6+ ions at three fluence levels of 1.0×1013, 5.0×1013 and 1.5×1014 Ne6+/cm2, respectively. The XRD patterns revealed that both the samples remained disordered even after irradiation. The maximum release of stored energy for CB was 212 J/g and that of PAN was 906 J/g. For CB, the release of stored energy was a first order reaction with activation energy of 2.79 eV and a frequency factor of 3.72×1028 per second. 13% of the defects got annealed by heating up to 700 °C. PAN showed a third-order release rate with activation energy of 1.69 eV and a frequency factor of 1.77×1014 per second. 56% of the total defects got annealed by heating it up to 700 °C. CB seems to be the better choice than PAN as it showed less energy release with a slower rate. PACS 61.80.Jh; 61.80.-x; 61.43Er; 61.43.-j; 68.43.Vx  相似文献   

8.
Some methods have been recently developed to investigate the distribution of implanted ions in semiconductors, especially into silicon. Generally, these techniques are not valid for boron due to the absence of convenient radioactive isotopes, or to a too small sensitivity when the lower part of the distribution is of interest. This corresponds to our problem, since boron implanted nuclear particle detectors prepared with high resistivity material (up to 50,000 ω.cm) are needed. The properties of these P-N junctions depend in a certain amount on the impurity distribution existing several orders of magnitude below the top of the distribution. Therefore, only the junction location method can be employed. In this method a series of N-type silicon samples, differing each from the other by an increase in resistivity are implanted with boron. The depth of the P-N junction corresponds to the point of the profile where the concentration NA is equal to that of the substrate ND (i.e. this latter being well known from the resistivity of the starting material). If the location of the junction can be measured, the profile can then be constructed point by point. The junction location is visualized generally by copper staining. Roosild,(1) Kleinfelder,(2) Fairfield(3) and D. E. Davies(4) have used this procedure for boron implantations at energies higher than 50 keV. There is a problem due to the small penetration of the boron ion, and, for high resistivity materials, it is difficult to know the true limits of the zones stained with copper.

In our problem, when heavy particle detectors are desired, it is necessary to implant at lower energies than those indicated previously (< 20 keV). We have developed a new technique derived from the junction depth method, which is useful even at very low implant energy (≈ 10 keV). It consists in measuring the energy loss by 100 keV protons when crossing the entrance window of the P-N junctions used as detectors.

In the first part of this paper the method is described and the possible errors are analyzed and evaluated. In the second part, the distribution of 15 keV boron ions implanted under several experimental conditions is studied. Emphasis is given to the defects resulting from the silicon bombardment.  相似文献   

9.
10.
We have measured the electron energy loss spectra of Ca2V2O7 in the reflexion mode, at incident energies between 200 and 2400 eV, and the X-ray photoelectron spectra excited by Al K α radiation. The abundant loss structures observed can be correlated with the possible interband transitions, collective oscillations, and excitation of O2s and V3p electrons within the V2O74- ion. The gap width and molecular orbital (MO) spread (or splitting) is about l eV larger in the V2O74- ion than in its component VO43- ion. Excitation of O2s states, which may occur together with some MO over-gap transitions, displaces the collective oscillations about 7 eV towards lower energies. Deeper V3p electrons are excited with a maximum energy loss some 7 eV above their binding energy. Cross transitions from Ca3p levels into some empty states of the V2O74- ion, or direct transitions to available states of the Ca2+ ion could not be unambiguously identified. The energy dependence of the excitation cross section and of the electron penetration depth results in a significant variation of the relative intensity of various losses over the investigated energy range.  相似文献   

11.
High energy electron energy loss spectroscopy (ELS) has been used to study He bubbles in Al, which were obtained by irradiation of He ions or α-particles of energy ranging from 500 eV to 8 keV and fluences 1x1020m?2 and 5x1020m?2. ELS reveals surface plasmon losses of the Al cavities as well as pressure shifts of the He-resonance lines as large as 1 eV. This is viewed as evidence for the existence of a so-called super-dense He in the bubbles. ELS is therefore a promising tool for obtaining information on the He pressure within the bubbles.  相似文献   

12.
邓金祥  秦扬  孔乐  杨学良  李廷  赵卫平  杨萍 《中国物理 B》2012,21(4):47202-047202
Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. The implantation energy of the ions is 19 keV, and the implantation dose is between 10 15 ions/cm 2 and 10 16 ions/cm 2 . The doped c-BN thin films are then annealed at a temperature between 400°C and 800 C. The results show that the surface resistivity of doped and annealed c-BN thin films is lowered by two to three orders, and the activation energy of c-BN thin films is 0.18 eV.  相似文献   

13.
The secondary electron (SE) spectrum (0 < E < 50 eV) has been analysed by means of a CMA. Samples were clean aluminum, aluminum becoming carbon contaminated, sintered graphite powder, electro chemically deposited polymer on platinum and monocrystals of silicon carbon contaminated. When the clean Al surface is becoming carbon contaminated a quick decrease of surface plasmon and bulk plasmon losses is observed whereas a main characteristic energy loss peak (ELS) at 20 eV and a secondary electron peak at 20 eV appear simultaneously. Both peaks are very sensitive general features of carbon contaminated surfaces. The main loss peak is attributed to the excitation of the carbon-carbon bounds (σ → σ1) as already proposed in the transmission ELS. The few eV change of the loss peak energy of various carbon compounds may correspond to slightly different carbon-carbon distances. The 20 eV secondary electrons could be produced by the relaxation of the excited state (σ1 → σ transition) via an Auger process. The cross section for molecular electronic excitation is higher than that of atomic ionization for inner level. The loss peak is as intense as the SE peak and higher by more than two orders of magnitude than the C KLL Auger peak. The modification of secondary emission under carbon contamination has been observed on a silicon sample by Scanning Electron Microscopy (SEM) in the Secondary Electron Image (SEI) mode.  相似文献   

14.
Electron energy loss spectroscopy (ELS) in the energy range of electronic transitions (primary energy 30 < E0 < 50 eV, resolution ΔE ≈ 0.3 eV) has been used to study the adsorption of CO on polycrystalline surfaces and on the low index faces (100), (110), (111) of Cu at 80 K. Also LEED patterns were investigated and thermal desorption was analyzed by means of the temperature dependence of three losses near 9, 12 and 14 eV characteristic for adsorbed CO. The 12 and 14 eV losses occur on all Cu surfaces in the whole coverage range; they are interpreted in terms of intramolecular transitions of the CO. The 9 eV loss is sensitive to the crystallographic type of Cu surface and to the coverage with CO. The interpretation in terms of d(Cu) → 2π1(CO) charge transfer transitions allows conclusions concerning the adsorption site geometry. The ELS results are consistent with information obtained from LEED. On the (100) surface CO adsorption enhances the intensity of a bulk electronic transition near 4 eV at E0 < 50 eV. This effect is interpreted within the framework of dielectric theory for surface scattering on the basis of the Cu electron energy band scheme.  相似文献   

15.
The effects of absorption of 7.9 and 5.0 eV photons by the polymer poly(methyl methacrylate) are studied using molecular dynamics simulations. By rapidly depositing a critical amount of thermal energy in the surface region (greater than 0.03 eV Å−3), a pressure wave is formed which causes spallation of the substrate. If there is only one photon absorbed per monomer unit of the polymer, the 7.9 eV photons can supply sufficient energy density to initiate ejection.  相似文献   

16.
The atomic-scale diffusion mechanism of boron in diamond is investigated by molecular dynamics simulation. A substitutional boron atom diffuses to the self-interstitial site when there exists a self-interstitial carbon atom in its nearest tetrahedral center and the system temperature is high. More important, the bond between boron and the self-interstitial carbon atom is never broken during the diffusion process, indicating that Bs-Ci pairs diffuse in the lattice by the interstitial mechanism. The results suggest that boron diffusion is mediated by carbon self-interstitial and not by the vacancy mechanism. In addition, the estimated activation energy and the diffusion exponential prefactor of boron diffusion in diamond are found to be 0.23 eV and 1.123×10−6cm2/s, respectively.  相似文献   

17.
Excitation spectra of CO have been obtained at low electron impact energy in the 10.600–13.400 eV energy loss range for scattering angles from 10 to 120°, with a 35 meV experimental resolution. The angular behaviour of the observed peaks is used to discriminate singlet-singlet and singlet-triplet transitions. Previously calculated Rydberg states are observed, in particular the triplet analogue of the F1Σ+ state. A new high energy valence triplet state is identified; the first observed vibrational level is at 11.595 eV and the vibrational spacing is 90 meV. Upper levels are strongly affected by predissociation.  相似文献   

18.
Experimental dependences are obtained for the yield and energy capacity of defect formation on the densities of the initial states. It turns out that for fixed proton energy, a) the energy capacity of the defects decreases down to ε0 = 500 eV/def; b) the energy yield increases practically linearly and is saturated at a specific energy capacity of 2.5·1020 eV/cm3. It is demonstrated that these conclusions directly follow from the symmetry of a given integral transformation of the radial distribution of the excitation density in the track ρE (r) into the radial distribution of the concentration of radiation-induced defects nE (r).  相似文献   

19.
孔凡杰  杜际广  蒋刚 《物理学报》2008,57(1):149-154
用密度泛函理论的B3LYP方法,对钯原子采用LANL2DZ收缩价基函数,碳原子和氧原子采用AUG-cc-pVTZ基组,对PdC,PdO和PdCO体系的结构进行优化,计算表明:PdC分子基态为1Σ+态,键长为Re=0.17285nm,离解能为4.919eV.PdO分子基态的平衡核间距为0.18546nm,其电子态为3Π,离解能为2.455eV,并拟合得到Murrell-Sorbie势能函数;PdCO分子有两 关键词: PdCO 分子结构 势能函数  相似文献   

20.
Collection of low energy electrons (<15 eV) duringConversionElectronMossbauerSpectroscopy (CEMS) provides enhanced surface sensitivity. Spectra collected from a 0.92857Fe foil using retarding field energy analyzers in conjunction with spiraltron electron multipliers demonstrates both resonant and nonresonant count rates which decrease by as much as 50% at 10 eV bias potential. Spectra from samples with the topmost 1.0 nm chemically labeled had total spectral areas of 99.0%mm/sec. The area ratio of the resonant 1.0 nm overlayer to the resonant substrate was 1.43 at 0 eV bias potential while at 15 eV the ratio decreased to 0.72. By vacuum evaporating a 5.0 nm copper coating on the sample, near complete attenuation of the low energy electrons from the 1.0 nm overlayer was achieved. These results suggest that some low energy electrons below 15 eV are formed as primary products of electronic relaxation following nuclear decay and that they are not the result of straggling or other scattering phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号