首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio calculations are performed to investigate the structural stability, electronic, structural and mechanical properties of 4d transition metal nitrides TMN (TM=Ru, Rh, Pd) for five different crystal structures, namely NaCl, CsCl, zinc blende, NiAs and wurtzite. Among the considered structures, zinc blende structure is found to be the most stable one among all three nitrides at normal pressure. A structural phase transition from ZB to NiAs phase is predicted at a pressure of 104 GPa, 50.5 GPa and 56 GPa for RuN, RhN and PdN respectively. The electronic structure reveals that these nitrides are metallic. The calculated elastic constants indicate that these nitrides are mechanically stable at ambient condition.  相似文献   

2.
The crystal structure, structural stability, electronic and mechanical properties of ReN and TcN are investigated using first principles calculations. We have considered five different crystal structures: NaCl, zinc blende (ZB), NiAs, tungsten carbide (WC) and wurtzite (WZ). Among these ZB phase is found to be the lowest energy phase for ReN and TcN at normal pressure. Pressure induced structural phase transitions from ZB to WZ phase at 214 GPa in ReN and ZB to NiAs phase at 171 GPa in TcN are predicted. The electronic structure reveals that both ReN and TcN are metallic in nature. The computed elastic constants indicate that both the nitrides are mechanically stable. As ReN in NiAs phase has high bulk and shear moduli and low Poisson's ratio, it is found to be a potential ultra incompressible super hard material.  相似文献   

3.
In this work, a detailed study of the structural, electronic, and absorption properties of crystalline 7,2′‐anhydro‐β‐d ‐arabinosylorotidine (Cyclo ara‐O) in the pressure range of 0–350 GPa is performed by density functional theory calculations. The detail analysis of the crystal with increasing pressure shows that complex transformations occur in Cyclo ara‐O under compression. In addition, the b‐direction is much stiffer than the a‐ and c‐axis at 0–330 GPa, suggesting that the Cyclo ara‐O crystal is anisotropic in the certain pressure region. In the pressure range of 110–290 GPa, repeated formations and disconnections of covalent bonds in O7–O6* and C3–C6* occur several times, resulting in a new six‐atom ring that forms at 220, 270, and 290 GPa, while a five‐atom ring and seven‐atom ring form between two adjacent molecules at 300 and 340 GPa, respectively. Then, the analysis of the band gap and DOS (PDOS) of Cyclo ara‐O indicates that its electronic character has changed at 300 GPa into an excellent insulator, but the electron transition is much easier at 350 GPa. Moreover, the relatively high optical activity with the pressure increases of Cyclo ara‐O is seen from the absorption spectra, and two obvious structural transformations are also observed at 180 and 230 GPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Density functional theory calculations have been performed to study the structural, electronic, absorption, and thermodynamic properties of crystalline 2,4,6‐triamino‐3,5‐dinitropyridine‐1‐oxide (TANPyo) in the pressure range of 0–50 GPa. The variation trends of the lattice constants, bond lengths, bond angles, intramolecular H‐bonds, and dihedral angles under compression show that there are two structural transformations at 17 and 38 GPa, respectively. The remarkable changes in the bond lengths indicate that there are two possible initiation decomposition mechanisms of TANPyo under compression. As the pressure increases, the intramolecular H‐bond strengthens. The obvious changes of the dihedral angles show that the planar structure of the TANPyo molecule is damaged under compression. Its absorption spectra show that as the pressure increases, the absorption coefficient of the N–H stretching decreases, while that of the O–H stretching increases. TANPyo has relatively high optical activity at high pressure. An analysis of thermodynamic properties indicates that both two structural transformations are endothermic and not spontaneous at room temperature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The structural, elastic, and electronic properties of SrZrN2 under pressure up to 100?GPa have been carried out with first-principles calculations based on density functional theory. The calculated lattice parameters at 0?GPa and 0?K by using the GGA-PW91-ultrasoft method are in good agreement with the available experimental data and other previous theoretical calculations. The pressure dependence of the elastic constants and the elastic-dependent properties of SrZrN2, such as bulk modulus B, shear modulus G, Young's modulus E, Debye temperature Θ, shear and longitudinal wave velocity VS and VL, are also successfully obtained. It is found that all elastic constants increase monotonically with pressure. When the pressure increases up to 140?GPa, the obtained elastic constants do not satisfy the mechanical stability criteria and a phase transition might has occurred. Moreover, the anisotropy of the directional-dependent Young's modulus and the linear compressibility under different pressures are analysed for the first time. Finally, the pressure dependence of the total and partial densities of states and the bonding property of SrZrN2 are also investigated.  相似文献   

6.
The pressure dependences of three adiabatic elastic constants, adiabatic bulk modulus, refractive index, and elastic anisotropy, as well as Cauchy deviation of fcc solid Xe have been determined up to 10 GPa at 296 K by high‐pressure Brillouin scattering spectroscopy. The characteristics of elastic properties at high pressure of rare‐gas solid Xe are investigated by comparison with the previous studies on Ne, Ar, and Kr. Above 10 GPa, the occurrence of splitting in the Brillouin signals and the direction dependence of acoustic velocities for solid Xe clearly show partial phase transformation to the hcp structure reported by the previous X‐ray diffraction and Raman scattering studies. The shear elastic modulus in the hcp phase of solid Xe has also been estimated at pressures up to 45 GPa by using the pressure dependence of the Raman wavenumber shift for the E2g mode. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, a new superhard material named Pm BN is proposed. The structural properties, stability, mechanical properties, mechanical anisotropy properties, and electronic properties of Pm BN are studied in this work. Pm BN is dynamically and mechanically stable, the relative enthalpy of Pm BN is greater than that of c-BN, and in this respect, and it is more favorable than that of T-B3N3, T-B7N7, tP24 BN, Imm2 BN, NiAs BN, and rocksalt BN. The Young's modulus, bulk modulus, and shear modulus of Pm BN are 327 GPa, 331 GPa, and 738 GPa, respectively, and according to Chen's model, Pm BN is a novel superhard material. Compared with its original structure, the mechanical anisotropy of Young's modulus of Pm BN is larger than that of C14 carbon. Finally, the calculations of the electronic energy band structure show that Pm BN is a semiconductor material with not only a wide band gap but also an indirect band gap.  相似文献   

8.
A potential superhard o-BC_4 N with Imm2 space group is identified by ab initio evolutionary methodology using CALYPSO code. The structural, electronic and mechanical properties of o-BC_4N are investigated. The elastic calculations indicate that o-BC_4N is mechanically stable. The phonon dispersions imply that this phase is dynamically stable under ambient conditions. The structure of o-BC_4N is more energetically favorable than o-BC_4N above the pressure of 25.1 GPa. Here o-BC_4N is a semiconductor with an indirect band gap of about 3.95 eV, and the structure is highly incompressible with a bulk modulus of 396.3 GPa and shear modulus of 456.0 GPa. The mechanical failure mode of o-BC_4N is dominated by the shear type. The calculated peak stress of 58.5 GPa in the(100)[001] shear direction sets an upper bound for its ideal strength. The Vickers hardness of o-BC_4N reaches 78.7 GPa, which is greater than that of t-BC_4N and bc-BC_4N proposed recently, confirming that o-BC_4N is a potential superhard material.  相似文献   

9.
为了探究烧结压力对不同晶粒尺寸碳化钽(TaC)力学性能的影响,通过高温高压技术对纳米、微米尺寸TaC粉末进行高温高压烧结,制备不同烧结条件下的块状TaC陶瓷。利用X射线衍射等表征方法对烧结样品的物相、元素分布、压痕形态进行表征,结果表明:TaC在烧结过程中物相稳定,且无杂质渗入。利用维氏硬度计对不同烧结压力(3.0、4.0和5.5 GPa)条件下的3种陶瓷样品进行维氏硬度测试,并进行微观结构分析,结果表明:随着烧结压力由3.0 GPa提升到5.5 GPa,微米尺寸TaC的维氏硬度(21.0 GPa)优于3.0、4.0 GPa下的纳米尺寸TaC维氏硬度(17.5、19.2 GPa)。此外,研究发现,测试维氏硬度时,3.0 kg应用载荷对测试TaC维氏硬度更加精确。研究结果对结构陶瓷烧结和超高温陶瓷硬度研究具有指导意义。  相似文献   

10.
We report local density functional calculations using the full potential linear muffin-tin orbital (FP-LMTO) method for binary platinum nitride (PtN), in five different crystal structures, the rock salt (B1), zinc-blende (B3), wurtzite (B4), nickel arsenide (B8), and PbS (B10) phases. The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus and its pressure derivative of PtN in these phases are determined and compared with the other available experimental and theoretical works.Our calculations confirm in the B3 structure that PtN is found to be mechanically stable with a large bulk modulus B=232.45 GPa and at a sufficiently high pressure the B81 structure would be favoured.The theoretical transition pressure from zinc blende (B3) to NiAs (B81), zinc-blende (B3) to rock-salt (B1) and zinc-blende (B3) to PbO (B10) is determined to be 9.10 GPa, 9.85 GPa and 69.35 GPa, respectively. Our calculation shows also in five different structures for PtN a high bulk modulus is a good indicator of a hard material.  相似文献   

11.
Based on the swarm-intelligence-based CALYPSO method the NbO, R3m and NiAs phases for ReN are predicted. The R3m phase of ReN at high pressure is firstly found. The structural, mechanical and electronic properties of ReN with the three phases are studied systematically. Moreover, it is also firstly found that pressure stimulated ReN to undergo twice phase transitions, from NbO to R3m phase at 43.3?GPa and from R3m to NiAs phase at 53.6?GPa. The three phases of ReN are verified to be mechanically stable and a promising low-compressible material at ambient conditions. According to the electron density of states and electron localization functions we have found that their structural stability and high hardness is on account of the strong covalent bonding of Re-N and N-N.  相似文献   

12.
To better clarify the physical properties for Al3RE precipitates, first-principles calculations are performed to investigate the vibrational, anisotropic elastic and thermodynamic properties of Al3Er and Al3Yb. The calculated results agree well with available experimental and theoretical ones. The vibrational properties indicate that Al3Er and Al3Yb will keep their dynamical stabilities with L12 structure up to 100 GPa. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 100 GPa. The mechanical anisotropy is predicted by anisotropic constants AG, AU, AZ and 3D curved surface of Young’s modulus. The calculated results show that both Al3Er and Al3Yb are isotropic at zero pressure and obviously anisotropic under high pressure. Further, we systematically investigate the thermodynamic properties and provide the relationships between thermal parameters and pressure. Finally, the pressure-dependent behaviours of density of states, Mulliken charge and bond length are discussed.  相似文献   

13.
We employ state-of-the-art ab initio density functional theory techniques to investigatethe structural, dynamical, mechanical stability and electronic properties of the ternaryAgInS2 compoundsunder pressure. Using cohesive energy and enthalpy, we found that from the six potentialphases explored, the chalcopyrite and the orthorhombic structures were very competitive aszero pressure phases. A pressure-induced phase transition occurs around 1.78 GPa from the low pressure chalcopyritephase to a rhombohedral RH-AgInS2 phase. The pressure phase transition around 1.78 GPa isaccompanied by notable changes in the volume and bulk modulus. The calculations of thephonon dispersions and elastic constants at different pressures showed that thechalcopyrite and the orthorhombic structures remained stable at all the selected pressure(0, 1.78 and 2.5 GPa), where detailed calculations were performed, while the rhombohedralstructure is only stable from the transition pressure 1.78 GPa. Pressure effect on thebandgap is minimal due to the small range of pressure considered in this study. Themeta-GGA MBJ functional predicts bandgaps which are in good agreement with availableexperimental values.  相似文献   

14.
The elastic moduli of the dense polycrystalline oxygen‐bearing η‐Ta2N3, a novel hard and tough high‐pressure (HP) material, were measured using the laser ultrasonic technique. The bulk modulus was determined to be B0 = 281(15) GPa which is only ~11% below that from HP compression measurements. Our value of the shear modulus G0 = 123(2) GPa is below those ones predicted theoretically for model structures. The discrepancies in G0 could be due to a substitution of an‐ ions and the formation of cation vacancies in η‐Ta2N3. Self‐healing behaviour of η‐Ta2N3 by mechanical polishing was observed and confirmed by two independent experimental methods. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
TaC和Ta2C结构稳定性、电子结构及力学性能的研究   总被引:1,自引:0,他引:1  
采用基于密度泛函理论的平面波超软赝势方法对TaC和Ta2C的结构及结构稳定性、电子结构和力学性能进行了系统地分析和研究.研究结果表明:TaC的最稳定结构为岩盐构型(RS-TaC),而Ta2C在零压下的最稳定结构为C6-Ta2C,随着外压力的增大,在23.5GPa处最稳定结构转变为L′3-Ta2C.同时还计算分析了TaC和Ta2C稳定结构的电子结构特征,解释了该材料具有优异力学性能的微观机制,并计算分析了外压力对其力学性能的影响.  相似文献   

16.
 基于密度泛函理论平面波赝势法的第一性原理计算,研究了过渡金属锇在高压下的状态方程、弹性常数和其它力学性质。 计算结果表明:过渡金属锇具有很高的体积模量B0(423.9 GPa)和弹性常数C11(771.3 GPa)与C33(852.0 GPa),与金刚石的(B0=452.8 GPa,C11=C33=1 082.9 GPa)比较,具有超低压缩特性;表征材料抵抗剪切变形能力的弹性常数C44(269.8 GPa)和切变模量(276.8 GPa)只有金刚石的(C44=586.9 GPa,G=537.5 GPa)一半,而所成的又是纯金属键,因此锇不具有超硬性。最后,定性分析了它的高体积模量和低硬度的微观电子机制,这对于设计与合成新的超硬性材料具有启发意义。  相似文献   

17.
张旭东  姜伟 《中国物理 B》2016,25(2):26301-026301
The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L1_2 structure Al_3Tm and Al_3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al_3Tm and A_3Lu keep their dynamical stabilities in L1_2 structure up to 100 GPa. The elastic properties and Debye temperatures for Al_3Tm and Al_3 Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the threedimensional(3D) curved surface of Young's modulus. The calculated results show that Al_3Tm and Al_3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al_3Tm and Al_3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications.  相似文献   

18.
First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.  相似文献   

19.
Electrical properties of stoichiometric iron sulfide (FeS) are investigated under high pressure with a designed diamond anvil cell. The process of phase transition is reflected by changing the electrical conductivity under high pressure, and the conductivity of FeS with the NiAs structure is found to be much smaller than other phases. Two new phase transitions without structural change are observed at 34.7 GPa and 61.3 GPa. The temperature dependence of the conductivity is found to be similar to that of a semiconductor when the pressure is higher than 35 GPa  相似文献   

20.
The structural stability and mechanical properties of WC in WC-, MoC- and NaCl-type structures under high pressure are investigated systematically by first-principles calculations. The calculated equilibrium lattice constants at zero pressure agree well with available experimental and theoretical results. The formation enthalpy indicates that the most stable WC is in WC-type, then MoC-type finally NaCl-type. By the elastic stability criteria, it is predicted that the three structures are all mechanically stable. The elastic constants Cij, bulk modulus B, shear modulus G, Young?s modulus E and Poisson?s ratio ν of the three structures are studied in the pressure range from 0 to 100 GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is assessed. Moreover, the elastic anisotropy of the three structures up to 100 GPa is also discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号