首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Plastic deformation exhibits strong size dependence at the micron scale, as observed in micro-torsion, bending, and indentation experiments. Classical plasticity theories, which possess no internal material lengths, cannot explain this size dependence. Based on dislocation mechanics, strain gradient plasticity theories have been developed for micron-scale applications. These theories, however, have been limited to infinitesimal deformation, even though the micro-scale experiments involve rather large strains and rotations. In this paper, we propose a finite deformation theory of strain gradient plasticity. The kinematics relations (including strain gradients), equilibrium equations, and constitutive laws are expressed in the reference configuration. The finite deformation strain gradient theory is used to model micro-indentation with results agreeing very well with the experimental data. We show that the finite deformation effect is not very significant for modeling micro-indentation experiments.  相似文献   

2.
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.  相似文献   

3.
For modeling the constitutive properties of viscoelastic solids in the context of small deformations, the so-called three-parameter solid is often used. The differential equation governing the model response may be derived in a thermodynamically consistent way considering linear spring-dashpot elements. The main problem in generalizing constitutive models from small to finite deformations is to extend the theory in a thermodynamically consistent way, so that the second law of thermodynamics remains satisfied in every admissible process. This paper concerns with the formulation and constitutive equations of finite strain viscoelastic material using multiplicative decomposition in a thermodynamically consistent manner. Based on the proposed constitutive equations, a finite element (FE) procedure is developed and implemented in an FE code. Subsequently, the code is used to predict the response of elastomer bushings. The finite element analysis predicts displacements and rotations at the relaxed state reasonably well. The response to coupled radial and torsional deformations is also simulated.  相似文献   

4.
A constitutive model for anisotropic elastoplasticity at finite strains is developed together with its numerical implementation. An anisotropic elastic constitutive law is described in an invariant setting by use of structural tensors and the elastic strain measure Ce. The elastic strain tensor as well as the structural tensors are assumed to be invariant in relation to superimposed rigid body rotations. An anisotropic Hill-type yield criterion, described by a non-symmetric Eshelby-like stress tensor and further structural tensors, is developed, where use is made of representation theorems for functions with non-symmetric arguments. The model also considers non-linear isotropic hardening. Explicit results for the specific case of orthotropic anisotropy are given. The associative flow rule is employed and the features of the inelastic flow rule are discussed in full. It is shown that the classical definition of the plastic material spin is meaningless in conjunction with the present formulation. Instead, the study motivates an alternative definition, which is based on the demand that such a quantity must be dissipation-free, as the plastic material spin is in the case of isotropy. Equivalent spatial formulations are presented too. The full numerical treatment is considered in Part II.  相似文献   

5.
循环硬化材料本构模型的隐式应力积分和有限元实现   总被引:1,自引:0,他引:1  
针对新发展的、能够描述循环硬化行为应变幅值依赖性的粘塑性本构模型,讨论了它的数值实现方法。首先,为了能够对材料的循环棘轮行为(Ratcheting)和循环应力松弛现象进行描述,对已有的本构模型进行了改进;然后,在改进模型的基础上,建立了一个新的、全隐式应力积分算法,进而推导了相应的一致切线刚度(Consistent Tangent Modulus)矩阵的表达式;最后,通过ABAQUS用户材料子程序UMAT将上述本构模型进行了有限元实现,并通过一些算例对一些构件的循环变形行为进行了有限元数值模拟,讨论了该类本构模型有限元实现的必要性和合理性。  相似文献   

6.
Based on the general solution given to a kind of linear tensor equations, the spin of a symmetric tensor is derived in an invariant form. The result is applied to find the spins of the left and the right stretch tensors and the relation among different rotation rate tensors has been discussed. According to work conjugacy, the relations between Cauchy stress and the stresses conjugate to Hill's generalized strains are obtained. Particularly, the logarithmic strain, its time rate and the conjugate stress have been discussed in detail. These results are important in modeling the constitutive relations for finite deformations in continuum mechanics. The project is supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences (No. 87-52).  相似文献   

7.
采用共旋应变的三维热弹塑性有限变形有限元法   总被引:3,自引:0,他引:3  
本文采用线性化共旋应变张量和增率型虚功原理,建立了有限变形热力耦合弹塑性有限元法。在该方法中,材料的流动应力取为应变总量、应变速率和温度的函数,推导了包含这种函数关系的本构矩阵。另外在温度场分析中,考虑了塑性功和摩擦功转化的热量。文后给出的算例表明该方法可以很好地模拟热加工过程。  相似文献   

8.
A new approach to the solution of finite plane-strain problems for compressible Isotropie elastic solids is considered. The general problem is formulated in terms of a pair of deformation invariants different from those normally used, enabling the components of (nominal) stress to be expressed in terms of four functions, two of which are rotations associated with the deformation. Moreover, the inverse constitutive law can be written in a simple form involving the same two rotations, and this allows the problem to be formulated in a dual fashion.For particular choices of strain-energy function of the elastic material solutions are found in which the governing differential equations partially decouple, and the theory is then illustrated by simple examples. It is also shown how this part of the analysis is related to the work of F. John on harmonic materials.Detailed consideration is given to the problem of a circular cylindrical annulus whose inner surface is fixed and whose outer surface is subjected to a circular shear stress. We note, in particular, that material circles concentric with the annulus and near its surface decrease in radius whatever the form of constitutive law within the given class. Whether the volume of the material constituting the annulus increases or decreases depends on the form of law and the magnitude of the applied shear stress.  相似文献   

9.
Internal dissipation always occurs in irreversible inelastic deformation processes of materials. The internal dissipation inequalities (specific mathematical forms of the second law of thermodynamics) determine the evolution direction of inelastic processes. Based on different internal dissipation inequalities several finite strain inelastic constitutive laws have been formulated for instance by Simo [Simo, J.C., 1992. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied Mechanics and Engineering 99, 61–112]; Simo and Miehe [Simo, J.C., Miehe, C., 1992. Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering 98, 41–104]; Lion [Lion, A., 1997. A physically based method to represent the thermo-mechanical behavior of elastomers. Acta Mechanica 123, 1–25]; Reese and Govindjee [Reese, S., Govindjee, S., 1998. A theory of finite viscoelasticity and numerical aspects. International Journal of Solids and Structures 35, 3455–3482]; Lin and Schomburg [Lin, R.C., Schomburg, U., 2003. A finite elastic–viscoelastic–elastoplastic material law with damage: theoretical and numerical aspects. Computer Methods in Applied Mechanics and Engineering 192, 1591–1627]; Lin and Brocks [Lin, R.C., Brocks, W., 2004. On a finite strain viscoplastic theory based on a new internal dissipation inequality. International Journal of Plasticity 20, 1281–1311]; and Lin and Brocks [Lin, R.C., Brocks, W., 2005. An extended Chaboche’s viscoplastic law at finite strains: theoretical and numerical aspects. Journal of Materials Science and Technology 21, 145–147]. These constitutive laws are consistent with the second law of thermodynamics. As the internal dissipation inequalities are described in different configurations or coordinate systems, the related constitutive laws are also formulated in the corresponding configurations or coordinate systems. Mathematically, these constitutive laws have very different formulations. Now, a question is whether the constitutive laws provide identical constitutive responses for the same inelastic constitutive problems. In the present work, four types of finite strain viscoelastic and endochronically plastic laws as well as three types of J2-plasticity laws are formulated based on four types of dissipation inequalities. Then, they are numerically compared for several problems of homogeneous or complex finite deformations. It is demonstrated that for the same inelastic constitutive problem the stress responses are identical for deformation processes without rotations. In the simple shear deformation process with large rotation, the presented viscoelastic and endochronically plastic laws also show almost identical stress responses up to a shear strain of about 100%. The three laws of J2-plasticity also produce the same shear stresses up to a shear strain of 100%, while different normal stresses are generated even at infinitesimal shear strains. The three J2-plasticity laws are also compared at three complex finite deformation processes: billet upsetting, cylinder necking and channel forming. For the first two deformation processes similar constitutive responses are obtained, whereas for the third deformation process (with large global rotations) significant differences of constitutive responses can be observed.  相似文献   

10.
李锡夔  刘泽佳  严颖 《力学学报》2003,35(6):668-676
对基于Biot理论的饱和多孔介质中动力-渗流耦合分析提出了一个耦合场混合元.固相位移、应变和有效应力以及流相压力、压力梯度和Darcy速度在单元内均处理为独立变量分别插值.基于胡海昌-Washizu三变量广义变分原理给出的饱和多孔介质动力-渗流耦合问题控制方程的单元弱形式,导出了单元公式.进一步导出了考虑压力相关非关联塑性的非线性单元公式和发展了相应的一致性算法.对几何非线性分析,采用了共旋公式途径.数值结果例题显示所发展耦合场混合元模拟大应变下由应变软化引起以应变局部化为特征的渐进破坏现象的性能.  相似文献   

11.
A constitutive relation for a viscous material subject to small strains but finite rotations is postulated and associated variational theorems are formulated. These are similar to the principle of minimum of potential energy and the Hellinger-Reissner theorem of an elastic solid. The derivation of strain-displacement relations for thin shells subject to small strains but moderately large rotations are given. On this basis a mixed variational principle for thin viscous shells is developed. For the problem of creep collapse of long cylindrical shells under external pressure it is demonstrated that the mixed variational principle may be advantageous compared to other variational theorems. A comparison with the creep collapse theory of Hoff et al. is given.  相似文献   

12.
Piece-wise homogeneous three-dimensional deformations in incompressible materials in finite elasticity are considered. The emergence of discontinuous strain fields in incompressible materials is studied via singularity theory. Since the simplest singularities, including Maxwell’s sets, are the cusp singularities, cusp conditions for the total energy function of homogeneous deformations for incompressible materials in finite elasticity will be derived, compatible with strain jumping. The proposed method yields simple criteria for the study of discontinuous deformations in three-dimensional problems and for any homogeneous incompressible material. Furthermore the homogeneous stress tensor is also not restricted. Neither fictitious nor simplified constitutive relations are invoked. The theory is implemented in a simple shearing problem.  相似文献   

13.
Summary  A finite element technique is presented for the analysis of one-dimensional torsional plastic waves in a thin-walled tube. Three different nonlinear consitutive relations deduced from elementary mechanical models are used to describe the shear stress–strain characteristics of the tube material at high rates of strain. The resulting incremental equations of torsional motion for the tube are solved by applying a direct numerical integration technique in conjunction with the constitutive relations. The finite element solutions for torsional plastic waves in a long copper tube subjected to an imposed angular velocity at one end are given, and a comparison with available experimental results to assess the accuracy of the constitutive relations considered is conducted. It is demonstrated that the strain-rate dependent solutions show a better agreement with the experimental results than the strain-rate independent solutions. The limitations of the constitutive equations are discussed, and some modifications are suggested. Received 9 February 1999; accepted for publication 28 March 2000  相似文献   

14.
在文献[1]中建立的多孔介质中化学-热-渗流-力学(CTHM)本构模型基础上,针对文献[2]建立的非饱和多孔介质中热-渗流-力学耦合分析的混合有限元方法,发展了非饱和多孔介质中混合元的化学-热-渗流-力学(CTHM)耦合本构模拟算法。采用非关联流动多重屈服准则模拟非饱和多孔介质的材料非线性行为。推导了u-pw-pa-T形式的包含了耦合率本构方程积分的向后欧拉映射算法和一致性弹塑性切线模量矩阵(单元刚度矩阵)的混合元一致性算法。本文给出了临界状态线(CSL)和状态边界面(SBS)两个屈服准则的一致性算法。数值结果显示了本文所发展的混合元耦合本构模拟算法在模拟由热、化学、力学荷载共同引起的多孔介质中化学-热-渗流-力学(CTHM)耦合行为的能力和有效性。  相似文献   

15.
本文采用大变形弹塑性有限元法对金属板条在柱形模中的压弯成形过程进行了数值模拟,并与实验进行了比较。首先给出了纠正的拉格朗日有限元公式和基于弹塑性乘法分解的超弹性塑性本构关系。对接触摩擦问题的处理采用了罚函数法。通过对数值结果的分析得出了一些对弯曲工艺的设计有指导价值的结论。  相似文献   

16.
A constitutive model in finite viscoelasticity   总被引:1,自引:0,他引:1  
A new constitutive model is suggested for the viscoelastic behavior of rubber-like materials at finite strains. The model treats a viscoelastic medium as a system with a variable number of purely elastic links, which can arise and collapse due to micro-Brownian motion of molecules.Assuming that the processes of birth and death for elastic links are independent of stresses, we obtain operator linear constitutive equations in finite viscoelasticity. According to this model, elastic and viscous effects may be distinguished and described independently of each other by a relaxation measure and a strain energy density.The potential energy of deformations is assumed to depend on the principal invariants of the relative Finger tensor of strains. Unlike the standard approach, we do not suggest any expression for the strain energy densitya priori, but suppose that this function is presented as a sum of two functions of one variable which are found by fitting experimental data.The proposed approach allows results of several experiments (uniaxial tension, biaxial tension, and torsion) for styrene butadiene rubber and butyl rubber to be predicted correctly.  相似文献   

17.
The strain energy density of a hyperelastic anisotropic body which is rotated before being subjected to a given but arbitrary deformation is viewed as a smooth function defined on the group of rotations, parametrized by the deformation gradient. It is shown that the critical points of this function correspond to rotations which, when composed with the prescribed deformation, yield a total strain tensor which is coaxial with the corresponding stress. For any type of material symmetry, there are at least two such rotations. Coaxiality of stress and strain for all deformations is shown to be a sufficient condition for the isotropicity of hyperelastic materials.Research supported by GNFM of CNR (Italy).  相似文献   

18.
This work describes the finite element implementation of a generalised strain gradient and rate-dependent crystallographic formulation for finite strains and general anisothermal conditions based on a multiplicative decomposition of the deformation gradient. The implementation involved the development of both a novel finite element formulation to determine the spatial slip rate gradients at each material point, and an implicit numerical integration scheme at the constitutive level to update the stresses and solution dependent variables. The time-integration procedure uses a Newton–Raphson scheme with a single level of iteration to solve the incremental non-linear equations associated with the non-local constitutive formulation. Closed-form solutions for the relevant fourth-order Jacobian tensors are given. The proposed numerical scheme is formulated in a general form and hence should be applicable to most existing crystallographic models. The crystallographic formulation is then used to investigate the effect of the morphology and volume fraction of the reinforcing phase of a two-phase single crystal on its macroscopic behaviour.  相似文献   

19.
高效的三维曲梁单元   总被引:4,自引:0,他引:4  
三维井眼中延伸数千米的三维细长圆截面钢钻柱应力分析问题是一个复杂的力学问题,通常使用有限元数值分析方法对其进行受力分析。而在进行有限元分析时,现有的圆弧曲粱单元和空间直粱单元在几何上都不能很好地模拟三维曲线形状的钻柱。为了确保计算精度.其单元划分势必不能过大,结果是计算时间长,收敛性差。为了解决这一问题,显然必须构建一种新的较有效的曲梁单元。基于自然坐标系,依据圆截面空间曲粱单元节点有6个自由度——3个线位移和3个角位移,利用包含全部刚体位移模式和常应变的形函数,忽略剪切变形,假设变形后的梁轴线的弯曲曲率改变为线性变化,建立起了保证收敛性的具有12个自由度的有初始曲率和挠率的圆截面空间曲梁的有限元模型。为了证明给出的有限元模型的高效性,分析了几个静态问题,并与现有文献中的解析解或数值结果进行了比较。基于所给出的结果,可望该有限元模型可以作为分析三维空间曲粱结构的有效工具。  相似文献   

20.
After recalling the constitutive equations of finite strain poroelasticity formulated at the macroscopic level, we adopt a microscopic point of view which consists of describing the fluid-saturated porous medium at a space scale on which the fluid and solid phases are geometrically distinct. The constitutive equations of poroelasticity are recovered from the analysis conducted on a representative elementary volume of porous material open to fluid mass exchange. The procedure relies upon the solution of a boundary value problem defined on the solid domain of the representative volume undergoing large elastic strains. The macroscopic potential, computed as the integral of the free energy density over the solid domain, is shown to depend on the macroscopic deformation gradient and the porous space volume as relevant variables. The corresponding stress-type variables obtained through the differentiation of this potential turn out to be the macroscopic Boussinesq stress tensor and the pore pressure. Furthermore, such a procedure makes it possible to establish the necessary and sufficient conditions to ensure the validity of an ‘effective stress’ formulation of the constitutive equations of finite strain poroelasticity. Such conditions are notably satisfied in the important case of an incompressible solid matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号