首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work is to develop an analytical homogenization method to estimate the effective mechanical properties of fluid-filled porous media with periodic microstructure. The method is based on the equivalent inclusion concept of homogenization applied earlier for solid–solid mixture. It is assumed that porous media are described by the poroelastic constitutive law developed by Biot where porosity is a material parameter. By solving the governing equations of poroelasticity in Fourier transformed domain, the relation between periodic strain and eigenstrain in porous media is established. This relation is subsequently used in an average consistency condition involving both solid and fluid phase stresses and strains. The geometry of the porous microstructure is captured in the g-integral. This homogenization method can also be applied to estimate the equivalent properties of solid–fluid mixture where a pure solid and fluid can be modeled by assuming very low and high porosity, respectively. Several examples are considered to establish this new method by comparing with other existing analytical and numerical methods of homogenization. As an application, poroelastic properties of cortical bone fibril are estimated and compared with previously computed values.  相似文献   

2.
3.
This paper presents a numerical technique to predict the effective elastic properties of heterogeneous fluid-filled porous media where the heterogeneity may result from dissimilar solid and fluid phase properties or due to mismatch in porous microstructure. The technique is based on the variational asymptotic method of homogenization where finite element method is employed for discretization. Biot’s theory of poroelasticity is used to describe porous media where both solid and fluid phase motions (u ? U formulation) are considered with associated strain measures. The method estimates the poroelastic constitutive law in single analysis which makes it very efficient compared to other finite element based homogenization techniques. The method is also general enough to compute all 28 elements of an anisotropic constitutive matrix. Other than estimating the effective properties the micro-stress/strain distribution is also obtained at no additional cost.The method is successfully applied for homogenization of porous media, fluid-filled cavity and finally for effective property estimation of bone lamella. In absence of any other direct method of porous media homogenization, the present technique is compared with classical homogenization methods with fluid approximated as solid of very high Poisson’s ratio. The suitability of this approximation and various other alternatives are also discussed. It is shown that the present homogenization method can be an efficient tool for bone property estimation where fluid-filled porous hierarchical micro-/nanostructure must be respected at all steps.  相似文献   

4.
建立了饱和多孔介质大变形分析的一种有限元-有限体积混合计算方法.将饱和多孔介质视为由固体骨架和孔隙水组成的两相体,其基本方程包括动力平衡方程和渗流连续方程.基于u-p假定和更新的Lagrange方法,饱和多孔介质的动力平衡方程在空间域内采用有限元方法进行离散,而渗流连续方程在空阃域内则采用有限体积法进行离散.通过两个数值算例,一维有限弹性固结和动力荷载作用下堤坝动力响应的计算,验证了该方法的有效性.  相似文献   

5.
6.
7.
In this paper a general set of equations of motion and duality conditions to be imposed at macroscopic surfaces of discontinuity in partially saturated, solid-second gradient porous media are derived by means of the Least Action Principle. The need of using a second gradient (of solid displacement) theory is shown to be necessary to include in the model effects related to gradients of porosity. The proposed governing equations include, in addition to balance of linear momentum for a second gradient porous continuum and to balance of water and air chemical potentials, the equations describing the evolution of solid and fluid volume fractions as supplementary independent kinematical fields. The presented equations are general in the sense that they are all written in terms of a macroscopic potential ΨΨ which depends on the introduced kinematical fields and on their space and time derivatives. These equations are suitable to describe the motion of a partially saturated, second gradient porous medium in the elastic and hyper-elastic regime. In the second part of the paper an additive decomposition for the potential ΨΨ is proposed which allows for describing some particular constitutive behaviors of the considered medium. While the potential associated to the solid matrix deformation is chosen in the form proposed by Cowin and Nunziato (1981) and Nunziato and Cowin (1979) and the potentials associated to water and air compressibility are chosen to assume a simple quadratic form, the macroscopic potentials associated to capillarity phenomena between water and air have to be derived with some additional considerations. In particular, two simple examples of microscopic distributions of water and air are considered: that of spherical bubbles and that of coalesced tubes of bubbles. Both these cases are suitable to describe capillarity phenomena in porous media which are close to the saturation state. Finally, an example of a simple microscopic distribution of water and air giving rise to a macroscopic capillary potential depending on the second gradient of fluid displacement is presented, showing the need of a further generalization of the proposed theoretical framework accounting for fluid second gradient effects.  相似文献   

8.
9.
The objective of this article is to derive a macroscopic Darcy’s law for a fluid-saturated moving porous medium whose matrix is composed of two solid phases which are not in direct contact with each other (weakly coupled solid phases). An example of this composite medium is the case of a solid matrix, unfrozen water, and an ice matrix within the pore space. The macroscopic equations for this type of saturated porous material are obtained using two-space homogenization techniques from microscopic periodic structures. The pore size is assumed to be small compared to the macroscopic scale under consideration. At the microscopic scale the two weakly coupled solids are described by the linear elastic equations, and the fluid by the linearized Navier–Stokes equations with appropriate boundary conditions at the solid–fluid interfaces. The derived Darcy’s law contains three permeability tensors whose properties are analyzed. Also, a formal relation with a previous macroscopic fluid flow equation obtained using a phenomenological approach is given. Moreover, a constructive proof of the existence of the three permeability tensors allows for their explicit computation employing finite elements or analogous numerical procedures.  相似文献   

10.
In this paper, we introduce a fully coupled thermo‐hydrodynamic‐mechanical computational model for multiphase flow in a deformable porous solid, exhibiting crack propagation due to fluid dynamics, with focus on CO2 geosequestration. The geometry is described by a matrix domain, a fracture domain, and a matrix‐fracture domain. The fluid flow in the matrix domain is governed by Darcy's law and that in the crack is governed by the Navier–Stokes equations. At the matrix‐fracture domain, the fluid flow is governed by a leakage term derived from Darcy's law. Upon crack propagation, the conservation of mass and energy of the crack fluid is constrained by the isentropic process. We utilize the representative elementary volume‐averaging theory to formulate the mathematical model of the porous matrix, and the drift flux model to formulate the fluid dynamics in the fracture. The numerical solution is conducted using a mixed finite element discretization scheme. The standard Galerkin finite element method is utilized to discretize the diffusive dominant field equations, and the extended finite element method is utilized to discretize the crack propagation, and the fluid leakage at the boundaries between layers of different physical properties. A numerical example is given to demonstrate the computational capability of the model. It shows that the model, despite the relatively large number of degrees of freedom of different physical nature per node, is computationally efficient, and geometry and effectively mesh independent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
This work describes the finite element implementation of a generalised strain gradient and rate-dependent crystallographic formulation for finite strains and general anisothermal conditions based on a multiplicative decomposition of the deformation gradient. The implementation involved the development of both a novel finite element formulation to determine the spatial slip rate gradients at each material point, and an implicit numerical integration scheme at the constitutive level to update the stresses and solution dependent variables. The time-integration procedure uses a Newton–Raphson scheme with a single level of iteration to solve the incremental non-linear equations associated with the non-local constitutive formulation. Closed-form solutions for the relevant fourth-order Jacobian tensors are given. The proposed numerical scheme is formulated in a general form and hence should be applicable to most existing crystallographic models. The crystallographic formulation is then used to investigate the effect of the morphology and volume fraction of the reinforcing phase of a two-phase single crystal on its macroscopic behaviour.  相似文献   

12.
The compatibility conditions matching macroscopic mechanical fields at the contact surface between a fluid-saturated porous solid and an adjacent bulk fluid are considered. The general form of balance equations at that discontinuity surface are analyzed to obtain the compatibility conditions for the tangent and normal components of the velocity and the stress vector fields. Considerations are based on the procedure similar to that used in the phenomenological thermodynamics for derivation of constitutive relations, where the entropy inequality and the concept of Lagrange multipliers are applied. This procedure made possible to derive the compatibility conditions for the viscous fluid flowing tangentially and perpendicularly to the boundary surface of the porous solid and to formulate the generalized form of the so called slip condition for the fluid velocity field, postulated earlier by Beavers and Joseph, J. Fluid. Mech. 30, 197–207 (1967). PACS 47.55.Mh Communicated by Y.D. Shikhmurzaev  相似文献   

13.
A general approach is proposed for defining the macroscopic free energy density function (and its complement, the free enthalpy) of a saturated porous medium submitted to finite deformations under non-isothermal conditions, in the case of compressible fluid and solid constituents. Reference is made to an elementary volume treated as an ‘open system’, moving with the solid skeleton. The proposed free energy depends on the generalised strains (namely an appropriate measure of the strain of the solid skeleton and the variation in fluid mass content) and the absolute temperatures of the solid and fluid phases (which are assumed to differ from each other for the sake of generality). This macroscopic energy proves to be a potential for the generalised stresses (namely the associated measure of the total stress and the free enthalpy of the pore fluid per unit mass) and the entropies of the solid and fluid phases. In contrast with mixture theories, the resulting free energy is not the simple sum of the free energies of the single constituents. Two simplified cases are examined in detail, i.e. the semilinear theory (originally proposed for isothermal conditions and extended here to non-isothermal problems) and the linear theory. The proposed approach paves the way to the consistent non-isothermal-hyperelastic-plastic modelling of saturated porous media with a compressible fluid and solid constituents.  相似文献   

14.
Based on the theory of porous media,a general Gurtin variational principle for theinitial boundary value problem of dynamical response of fluid-saturated elastic porous media isdeveloped by assuming infinitesimal deformation and incompressible constituents of the solid andfluid phase.The finite element formulation based on this variational principle is also derived.Asthe functional of the variational principle is a spatial integral of the convolution formulation,thegeneral finite element discretization in space results in symmetrical differential-integral equationsin the time domain.In some situations,the differential-integral equations can be reduced to sym-metrical differential equations and,as a numerical example,it is employed to analyze the reflectionof one-dimensional longitudinal wave in a fluid-saturated porous solid.The numerical results canprovide further understanding of the wave propagation in porous media.  相似文献   

15.
李锡夔  刘泽佳  严颖 《力学学报》2003,35(6):668-676
对基于Biot理论的饱和多孔介质中动力-渗流耦合分析提出了一个耦合场混合元.固相位移、应变和有效应力以及流相压力、压力梯度和Darcy速度在单元内均处理为独立变量分别插值.基于胡海昌-Washizu三变量广义变分原理给出的饱和多孔介质动力-渗流耦合问题控制方程的单元弱形式,导出了单元公式.进一步导出了考虑压力相关非关联塑性的非线性单元公式和发展了相应的一致性算法.对几何非线性分析,采用了共旋公式途径.数值结果例题显示所发展耦合场混合元模拟大应变下由应变软化引起以应变局部化为特征的渐进破坏现象的性能.  相似文献   

16.
17.
A mixture theory is developed for multi-component micropolar porous media with a combination of the hybrid mixture theory and the micropolar continuum theory. The system is modeled as multi-component micropolar elastic solids saturated with multi- component micropolar viscous fluids. Balance equations are given through the mixture theory. Constitutive equations are developed based on the second law of thermodynamics and constitutive assumptions. Taking account of compressibility of solid phases, the volume fraction of fluid as an independent state variable is introduced in the free energy function, and the dynamic compatibility condition is obtained to restrict the change of pressure difference on the solid-fluid interface. The constructed constitutive equations are used to close the field equations. The linear field equations are obtained using a linearization procedure, and the micropolar thermo-hydro-mechanical component transport model is established. This model can be applied to practical problems, such as contaminant, drug, and pesticide transport. When the proposed model is supposed to be porous media, and both fluid and solid are single-component, it will almost agree with Eringen's model.  相似文献   

18.
We propose a general formulation – which we believe to be new – for the mean-field homogenization of inclusion-reinforced elasto-viscoplastic composites assuming small strains. Our proposal is based on an interplay between constitutive equations and numerical algorithms, and the key ideas behind it are the following. The evolution equations for inelastic strain and internal variables at the beginning of each time interval are linearized around the ending time of the same interval. The linearized equations are then numerically integrated using a fully implicit backward Euler scheme. The obtained algebraic equations lead to an incrementally affine stress–strain relation which involves two important terms. The first one is the algorithmic tangent operator, obtained by consistent linearization of the time discretized constitutive equations. The second term is a new one and called an affine strain increment. The proposal leads to thermoelastic-like relations directly in the time domain, and not in the Laplace–Carson (L–C) one. There is no need for viscoelastic-type integral rewriting of the evolution equations, for L–C transforms, or for numerical inversion back from L–C to time domains. The proposed method can be readily applied to sophisticated elasto-viscoplastic models with an arbitrary set of scalar or tensor internal variables, and is valid for multi-axial, non-monotonic and non-proportional loading histories. The theory is applied in detail to a well-known constitutive model, and verified against finite element simulations of representative volume elements or unit cells, for a number of composite materials.  相似文献   

19.
In this article, porous media theories are referred to as mixture theories extended by the well-known concept of volume fractions. This approach implies the diverse field functions of both the porous solid matrix and the pore fluid to be represented by average functions of the macroscale.The present investigations are based on a binary model of incompressible constituents, solid skeleton, and pore liquid, where, in the constitutive range, use is made of the second-grade character of general heterogeneous media. Within the framework of geometrically finite theories, the paper offers a set of constitutive equations for the solid matrix, the viscous pore liquid and the different interactions between the constituents. The constitutive model applies to saturated as well as to empty solid materials, taking into account the physical nonlinearities based on elasto-plastic solid deformations. In particular, the constitutive model concentrates on granular materials like soil or concrete, where the elastic deformations are usually small and the plastic range is governed by kinematically hardening properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号