首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
浒苔中有毒有害元素及砷化学形态的研究   总被引:1,自引:0,他引:1  
建立了微波消解-电感耦合等离子体质谱(ICP-MS)法测定浒苔中Cu、As、Cd、Hg、Pb等元素含量的分析方法,对各元素的线性关系良好(r=0.999 3~0.999 9),检出限为0.28~2.3 μg/L,元素加标回收率为83%~108%,符合痕量分析要求.并利用高效液相色谱(HPLC)与电感耦合等离子体质谱(ICP-MS)联用技术对浒苔样品中的砷化学形态进行了初步探讨,发现其中砷主要以无机As(Ⅴ)和某种未知的砷形态存在,推测该未知砷形态为砷糖类物质.  相似文献   

2.
人肝细胞中砷代谢产物分析表征研究   总被引:1,自引:0,他引:1  
采用高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)联用技术对染砷后Chang肝细胞中的砷代谢产物进行分析.通过参考文献及相关实验推测出两种未知砷代谢产物,并采用标准合成加入法证明其中一种未知砷代谢产物为一甲基亚胂酸(MMAⅢ).定量分析结果显示,随着染砷浓度的增大,细胞中的-甲基砷、二甲基砷以及无机砷含量...  相似文献   

3.
应用高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)联用技术,建立了花茶中6种砷形态:亚砷酸根、砷酸根、一甲基砷酸、二甲基砷酸、砷胆碱、砷甜菜碱的分析方法。样品在真空条件下采用水-磷酸进行提取,用Hamilton PRP-X100阴离子交换柱,以碳酸铵溶液和硝酸铵+磷酸氢二铵作为流动相进行梯度洗脱,电感耦合等离子体质谱进行定性和定量分析。方法学验证表明:在0.5~50μg/L范围内各砷形态线性良好,线性相关系数(r2)都大于0.999,定量限为0.5μg/L,加标回收率在89.9%~104.1%之间,相对标准偏差(RSD)在1.4%~4.2%之间。方法适用于各类花茶中的6种砷形态分析。  相似文献   

4.
建立了一种同时测定果蔬中亚砷酸根、砷酸根、砷胆碱、砷甜菜碱、一甲基砷酸和二甲基砷酸等6种砷形态的高效液相色谱-电感耦合等离子体质谱分析方法。样品经甲醇水提取,采用阴离子分析柱,50 mmol/L碳酸铵溶液和水作为流动相进行梯度洗脱,高效液相色谱分离,电感耦合等离子体质谱进行定性和定量分析。在0.5~50μg/kg范围内...  相似文献   

5.
鱿鱼丝中砷的形态分析   总被引:4,自引:0,他引:4  
采用电感耦合等离子体-质谱(ICP-MS)测定了14种鱿鱼丝(Dried Shredded Squid,DSS)中的砷总量,发现14种鱿鱼丝中的砷总量均低于2μg.g-1;用高效液相色谱(HPLC)与ICP-MS联用技术建立了As(Ⅲ)、As(Ⅴ)、二甲基胂酸(DMA)、甲基胂酸(MMA)、砷甜菜碱(AsB)和砷胆碱(AsC)六种砷形态的分离分析方法;采用快速溶剂萃取(ASE)、超声溶剂提取(SON)和盐酸浸提三种不同的前处理方法分析了3种鱿鱼丝中的砷形态,发现鱿鱼丝中的砷主要以AsB形式存在。  相似文献   

6.
采用液相色谱-蒸气发生-原子荧光光谱联用技术(HPLC-HG-AFS,以下简称LC-AFS)对水产动植物样品中无机砷进行测定。藻类中以紫菜、海带、羊栖菜为研究对象,水产动物中以贝类、鱼类、虾类为研究对象,实验中研究了流动相的种类和浓度、提取剂的种类和浓度,并通过正交实验法确定了最佳提取温度、提取时间、氧化时间。在最优的实验条件下运用等度洗脱的方式测定了样品中无机砷的含量,并对方法的有效性进行了验证,结果表明,三价砷、五价砷、一甲基砷和二甲基砷在5~100μg/L范围内线性关系良好;同时对不同海产品进行加标回收实验,结果表明,各组分的加标回收率在80%~105%。平行样品测定结果的相对标准偏差在2%~6%。说明液相色谱-原子荧光光谱联用法很好地解决了水产品中砷形态测定的问题,尤其对无机砷的测定提供了非常有效的方法。方法简便、准确、设备价格低廉,完全可用于水产动植物产品中无机砷的测定。  相似文献   

7.
砷形态分析   总被引:1,自引:0,他引:1  
综述了近几年砷形态分析方法的最新研究进展.以常见砷形态分析方法发展为主线,讨论了不同砷形态分析方法的发展过程和应用情况,对不同方法的优缺点进行了扼要评述.早期的砷形态分析方法主要是以色谱和原子光谱联用为主要手段,随着不同的、更为有效的砷化合物检测手段的出现,砷形态分析方法也不断进行完善、发展.目前,在定量分析方面以液相色谱和电感耦合等离子体质谱联用方法为主要常规分析手段;在砷化合物定性分析方面,色谱-电感耦合等离子体质谱与电喷雾质谱相互补充的联用方法逐渐成为了主要分析手段.砷形态分析在环境健康和毒理学方面的应用是目前该领域的主要研究方向,结合国际上最新的研究进展,讨论了砷形态分析方法在环境毒理学等研究中发挥的重要作用.  相似文献   

8.
15种中药材中砷的形态分析   总被引:2,自引:1,他引:1  
利用高效液相色谱(HPLC)与电感耦合等离子体质谱(ICP-MS)联用技术对6种砷形态[砷胆碱(AsC)、砷甜菜碱(AsB)、三价砷As(Ⅲ)、二甲基砷酸(DMA)、甲基砷酸(MMA)和五价砷As(Ⅴ)]进行了分离,测定了0 ~100 μg/L范围内6种砷形态的混合标准工作曲线,相关系数(r2)优于0.990,方法检出限均为0.2 μg/L.采用甲醇-水(体积比1 : 1)超声法提取了15种中药材中的砷形态,用HPLC-ICP-MS进行分析,结果表明,15种中药材中存在的主要砷形态是有毒的As(Ⅴ),另外还有少量的砷甜菜碱和砷胆碱,并且动物用药中的有机砷含量明显高于植物用药.  相似文献   

9.
利用高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)联用技术对染砷后Chang肝细胞中的砷代谢产物进行分析.借助合成标准,采用标准加入法,表征出肝细胞中一种未知砷代谢产物甲基硫代砷酸(MMTA).定量分析显示,MMTA含量随染砷浓度升高呈上升趋势.采用质量平衡分析法对双氧水处理前后的染砷细胞样品进行研究.结果显示,除小分子砷代谢产物外,细胞中部分砷代谢产物以大分子形态存在,推测其为砷蛋白类物质.由于MMTA系首次在人体肝细胞中发现,本研究结合实验现象和相关文献推测该物质系细胞代谢产物,并且其代谢途径与二甲基硫代砷酸相似,是以细胞内与其对应的一甲基亚砷酸为代谢起点.  相似文献   

10.
土壤中砷形态分析研究进展   总被引:1,自引:0,他引:1  
本文评述了近年来国内外土壤中砷形态分析的主要研究方法,包括联用分析法、分级提取法和同步辐射X-射线线吸收光谱法。联用分析法包括气相色谱联用法、毛细管电泳联用法和高效液相色谱联用法。重点介绍了目前应用范围较广的高效液相色谱-等离子体质谱(HPLC-ICP-MS)联用法和高效液相色谱-氢化物发生-原子荧光光谱(HPLC-HG-AFS)联用法。同步辐射X-射线线吸收光谱法近几年发展迅速,是最具发展潜力的形态分析方法。  相似文献   

11.
Using methanol/water mixtures (from pure water to pure methanol), with different desorption and solubility parameters, and varying extractant volume to algal mass (V/m) ratios, the extractability of arsenic species from CRM IAEA-140/TM was investigated. A linear sorption isotherm-based model was developed to process the data obtained with variable volume extraction, allowing the unambiguous deduction of the maximal extractable species concentrations under the specific extraction conditions, even for more stable species.The maximal extractable arsenic fraction ranged from 41 to 68% of the total arsenic concentration in CRM IAEA-140/TM, depending on the extractant composition, with pure methanol giving the lowest extraction yield and pure water giving erratic extractability (probably due to bad wettability). The main arsenic species quantified in the methanol/water extracts were arsenosugars, with arsenosugars 1 (glycerol arsenosugar), 3 (sulfonate arsenosugar) and 4 (sulfate arsenosugar) making up ca. 90% of the maximal extractable arsenic. The rest accounts for DMA (dimethylarsinate), arsenosugar 2 (phosphate arsenosugar) and As(V). There is no clear extraction pattern emerging from the data although it may be seen that extraction of more polar species (e.g. arsenosugar 1) is favoured in pure methanol and less polar more ionic species (e.g. arsenosugar 2 and As(V)) in methanol extractants with a higher water percentage.The precise and highly accurate data may be used for quality control purposes under strictly followed extraction conditions since the extraction is operationally defined. Additionally, the variable volume extraction methodology presented may be applied to other elemental species in other matrices using other extractants. Although this approach does not maximise the absolute extractability but only that which is extractant-specific, experimentators are forewarned that in most cases only a fingerprint of the extractant-specific species is produced unless a quantitative extraction of all species is obtained.  相似文献   

12.
Seven algae samples, five purchased from food stores and two reference algae (BCR 279 Sea Lettuce) were distributed as blind samples to 13 laboratories from which five labs attempted a full characterisation of the water-soluble fraction with respect to their arsenic species. The extraction efficiency is largely dependant on the algae and varied from 3% to 96%. Besides inorganic arsenic (mainly as As(V)) DMA(V) and, in particular, several arsenosugars were identified in all samples. From the five labs, three labs gave agreeable results in respect of the arsenic species identification and its quantification, although different chromatographic methods were used. Different Hijiki samples seem to contain largely different arsenic concentration (67–113 mg As/kg) which may also have an influence on the distribution of inorganic arsenic and arsenosugars.  相似文献   

13.
Anion and cation exchange HPLC-ICP-MS was used to separate and detect mixtures of four dimethylarsinyl-riboside derivatives (arsenosugars), in the presence of eight other arsenic species naturally occurring in the marine environment. The separations achieved showed that two arsenosugars 11 and 13 (cf. Table 2) were present in shellfish certified reference materials (CRMs) and in a lobster hepatopancreas CRM. The concentration of the two arsenosugars in the shellfish samples amounts to 18% of the total arsenic as compared to arsenobetaine at 9–13% and dimethylarsinate at 4–9% of the total arsenic. Additionally, a chromatographic peak with the same retention time as that of 2-dimethylarsinylacetic acid was detected in the shellfish samples. Further support of the identity of this peak was gained after spiking the sample extracts with the standard substance which resulted in a single, but larger peak. The indication that this novel arsenical is present in shellfish, and the recently reported finding of arsenocholine in seafood supports a proposed marine biosynthetic pathway of arsenic that includes both of these compounds as the immediate precursors of arsenobetaine, the end-product of the marine arsenic metabolism.  相似文献   

14.
In the marine environment, arsenic accumulates in seaweed and occurs mostly in the form of arsenoribofuranosides (often called arsenosugars). This study investigated the degradation pathways of arsenosugars from decaying seaweed in a mesocosm experiment. Brown seaweed (Laminaria digitata) was placed on top of a marine sediment soaked with seawater. Seawater and porewater samples from different depths were collected and analysed for arsenic species in order to identify the degradation products using high‐performance liquid chomatography–inductively coupled plasma mass spectrometry. During the first 10 days most of the arsenic found in the seawater and the shallow sediment is in the form of the arsenosugars released from the seaweed. Dimethylarsenoylethanol (DMAE), dimethylarsinic acid (DMA(V)) and, later, monomethylarsonic acid (MMA(V)) and arsenite and arsenate were also formed. In the deeper anaerobic sediment, the arsenosugars disappear more quickly and DMAE is the main metabolite with 60–80% of the total arsenic for the first 60 days besides a constant DMA(V) contribution of 10–20% of total soluble arsenic. With the degradation of the soluble DMAE the solubility of arsenic decreases in the sediment. The final soluble degradation products (after 106 days) were arsenite, arsenate, MMA(V) and DMA(V). No arsenobetaine or arsenocholine were identified in the porewater. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The development of analytical techniques suitable for providing structural information on a wide range of elemental species is a growing necessity. For arsenic speciation a variety of mass spectrometric techniques, mainly inductively coupled plasma mass spectrometry (ICP-MS) and electrospray tandem mass spectrometry (ES-MS/MS) coupled on-line with high-performance liquid chromatography (HPLC), are in use. In this paper we report the identification of arsenic species present in samples of marine origin (seaweed extracts) using ES ion trap mass spectrometry (IT) multistage mass spectrometry (MS(n)). Both reversed-phase and anion-exchange HPLC have been coupled on-line to ES-ITMS. Product ion scans with multiple stages of tandem MS (MS(n); n=2-4) were used to acquire diagnostic data for each arsenosugar. The spectra contain structurally characteristic fragment ions for each of the arsenosugars examined. In addition it was observed that upon successive stages of collision-induced dissociation (CID) a common product ion (m/z 237) was formed from all four arsenosugars examined. This product ion has the potential to be used as an indicator for the presence of dimethylated arsenosugars (dimethylarsinoylribosides). The HPLC/ES-ITMS(n) method developed allows the sensitive identification of arsenosugars present in crude seaweed extracts without the need for extended sample preparation. In fact, sample preparation requirements are identical to those typically employed for HPLC/ICP-MS analysis. Additionally, the resulting product ions are structurally diagnostic of the arsenosugars examined, and tandem mass spectra are reproducible and correspond well to those obtained using other low-energy CID techniques. As a result, the HPLC/ES-ITMS(n) approach minimises the potential for arsenic species misidentification and has great potential as a means of overcoming the need for characterised standards.  相似文献   

16.
A method using high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) has been developed to determine inorganic arsenic (arsenite, arsenate) along with organic arsenic compounds (monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium ion and several arsenosugars) in fish, mussel, oyster and marine algae samples. The species were extracted by means of a methanol/water mixture and a dispersion unit in 2 min, with extraction efficiencies ranging from 83 to 107% in the different organisms. Up to 17 different species were determined within 15 min on an anion-exchange column, using a nitric acid gradient and an ion-pairing reagent. As all species are shown in one chromatogram, a clear overview of arsenic distribution patterns in different marine organisms is given. Arsenobetaine is the major compound in marine animals whereas arsenosugars and arsenate are dominant in marine algae. The method was validated with CRM DORM-2 (dogfish muscle). Concentrations were within the certified limits and low detection limits of 8 ng g(-1) (arsenite) to 50 ng g(-1) (arsenate) were obtained.  相似文献   

17.
In this opinion paper the toxicokinetic behaviour of arsenosugars is reviewed and compared with that of inorganic arsenic and arsenobetaine. It is concluded that the arsenosugars are similar to inorganic arsenic in terms of metabolite formation and tissue accumulation. As a pragmatic means of generating uniform data sets which adequately represent the toxicity of arsenic in food we recommend reporting partly speciated arsenic concentrations in food commodities in three fractions: i) toxic inorganic arsenic as arsenate (after oxidation); ii) arsenobetaine as established non-toxic arsenic; and iii) potentially toxic arsenic, which includes arsenosugars and other organoarsenicals.  相似文献   

18.
The extraction and clean-up procedures developed to isolate the water-soluble arsenic species present in the marine macroalga Fucus distichus, from British Columbia, Canada, are described. The arsenic species were extracted into methanol and then subjected to gel-permeation and ion-exchange chromatography. Fractions high in arsenic were identified by using graphite furnace atomic absorption spectroscopy (GF-AAS), and further investigated by using high-performance liquid chromatography coupled to inductively coupled plasma–mass spectrometry (HPLC–ICP MS). By using different HPLC columns and mobile-phase conditions, the four major arsenic-containing compounds present in the macroalga were positively identified as arsenosugars; one minor compound remained unidentified. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Arsenic-containing carbohydrates, generally termed arsenosugars, have been the subject of increasing analytical interest in arsenic speciation analysis. The present review gives an overview concerning achievements and trends in the field of instrumental analysis of arsenosugars. The typical experimental approaches for sample pre-treatment, extraction, separation and detection are discussed. Current possibilities and limitations of modern instrumental techniques are pointed out.  相似文献   

20.
Wenhua Geng 《Talanta》2009,79(2):369-894
For the arsenic speciation in marine product samples, two types of pretreatment-analysis combination were compared. One is the combination of solvent extraction and high performance liquid chromatography (HPLC) followed by a highly sensitive arsenic detection, while the other is the combination of alkaline digestion and cryogenic trap (CT) method followed by a highly sensitive arsenic detection. For six certified reference materials (CRMs) of marine animal samples, the concentrations of arsenobetaine (AsB) obtained from the extraction-HPLC method were very consistent with those of trimethylated arsenic species measured by the digestion-CT method. For four seaweed samples, the determination of three arsenosugars (Sugar-1, Sugar-2, and Sugar-3) was favorably carried out by the extraction-HPLC method. Those seaweed samples were also subjected to the digestion-CT method, and the amounts of dimethylated arsenic species measured by the method were approximately equal to the sum of the amounts of dimethylarsinic acid (DMAA) and three arsenosugars (Sugar-1 + Sugar-2 + Sugar-3) obtained from the extraction-HPLC method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号