首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the synthesis and characterization of the mesogen-bearing bolaform amphiphile 4,4'-dihydroxybiphenylbis(11-pyridinium-N-yl-undecanoic ester) dibromide (BP-10) and its solid/liquid interfacial self-assembly. Cylindrical micelles are directly observed by atomic force microscopy (AFM) at the interface between mica and the aqueous solution above the critical micelle concentration (cmc). In situ and ex situ AFM studies indicate that the cylindrical micelles are stable both at the mica/solution interface and in the dry state. The enhanced stability of the micellar structures enables a detailed investigation of their self-assembly behavior and supramolecular structures at the interface. The adsorption model proposed here is supported by the variation of the interfacial self-assemblies on changing the solution concentration and substrate temperature.  相似文献   

2.
A fascinating feature inherent to aqueous surfactant solutions is the phenomenon of self-organization: above a certain critical concentration (the critical micelle concentration, CMC) detergent molecules associate spontaneously to build up structural entities of colloidal dimensions called micelles. The architecture of these agglomerates is such that the interior contains the hydrophobic alkyl chain of the amphiphile while the hydrophilic head groups are located at the surface and are in contact with bulk water. In the case of ionic micelles the interface is charged giving rise to an electrical double layer and a potential difference of up to several hundred millivolts between the micellar pseudophase and water. Thus micellar systems are microheterogeneous in character: the electrostatic potential and polarity prevailing in the interior of the aggregate differ from those of the bulk aqueous phase. A particularly attractive aspect of photochemical studies in micellar systems is the possibility of organizing the reactants at a molecular level: by comparison of the data in micelles with similar data in homogeneous solution one can learn about the molecular details of a given reaction and establish which conditions favor one pathway or another. In simple surfactant systems differences in rate and efficiency of a reaction will often be controlled by local electrostatic potentials and the compartmentalization of the reagents within the surfactant aggregates. Through the latter effect the statistics of probe distribution over the micelles becomes important in controlling fast photochemical events. Functional micelles are distinguished by the fact that the surfactant molecule contains a group which itself participates in the photoprocess. These units are unique in that self-assembly often introduces striking cooperative effects.  相似文献   

3.
The association of many classes of surface active molecules into micellar aggregates is a well-known phenomenon. Micelles are often drawn as static structures of spherical aggregates of oriented molecules. However, micelles are in dynamic equilibrium with surfactant monomers in the bulk solution constantly being exchanged with the surfactant molecules in the micelles. Additionally, the micelles themselves are continuously disintegrating and reforming. The first process is a fast relaxation process typically referred to as τ1. The latter is a slow relaxation process with relaxation time τ2. Thus, τ2 represents the entire process of the formation or disintegration of a micelle. The slow relaxation time is directly correlated with the average lifetime of a micelle, and hence the molecular packing in the micelle, which in turn relates to the stability of a micelle. It was shown earlier by Shah and coworkers that the stability of sodium dodecyl sulfate (SDS) micelles plays an important role in various technological processes involving an increase in interfacial area, such as foaming, wetting, emulsification, solubilization and detergency. The slow relaxation time of SDS micelles, as measured by pressure-jump and temperature-jump techniques was in the range of 10−4–101 s depending on the surfactant concentration. A maximum relaxation time and thus a maximum micellar stability was found at 200 mM SDS, corresponding to the least foaming, largest bubble size, longest wetting time of textile, largest emulsion droplet size and the most rapid solubilization of oil. These results are explained in terms of the flux of surfactant monomers from the bulk to the interface, which determines the dynamic surface tension. The more stable micelles lead to less monomer flux and hence to a higher dynamic surface tension. As the SDS concentration increases, the micelles become more rigid and stable as a result of the decrease in intermicellar distance. The smaller the intermicellar distance, the larger the Coulombic repulsive forces between the micelles leading to enhanced stability of micelles (presumably by increased counterion binding to the micelles). The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped-flow and pressure-jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results show relaxation times τ2 in the range of seconds for Triton X-100 to minutes for polyoxyethylene alkyl ethers. The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation time τ2 was related to dynamic surface tension and foaming experiments. A slow break-up of micelles, (i.e. a long relaxation time τ2) corresponds to a high dynamic surface tension and low foamability, whereas a fast break-up of micelles, leads to a lower dynamic surface tension and higher foamability. In conclusion, micellar stability and thus the micellar break-up time is a key factor in controlling technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification and oil solubilization. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the break-up of micelles. Especially when the free monomer concentration is low, as indicated by a low CMC, the micellar break-up time is a rate limiting step in the supply of monomers, which is the case for many nonionic surfactant solutions. Therefore, relaxation time data of surfactant solutions enables us to predict the performance of a given surfactant solution. Moreover, the results suggest that one can design appropriate micelles with specific stability or τ2 by controlling the surfactant structure, concentration and physico-chemical conditions, as well as by mixing anionic/cationic or ionic/nonionic surfactants for a desired technological application.  相似文献   

4.
Self-assembled Gemini surfactant film-mediated dispersion stability   总被引:1,自引:0,他引:1  
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).  相似文献   

5.
We report herein the synthesis of a series of polymerizable bolaamphiphiles containing a diacetylene group and mesogenic unit and their self-organization behaviors in bulk and at interface. The polymerizable bolaamphiphiles are noted as DPDA-n, where n refers to the spacer length of alkyl chain. DPDA-10 with suitable spacer length can self-organize into stable cylindrical micellar nanostructures, and these nanostructures have preferred orientation regionally when adsorbed at the mica/water interface. It is confirmed that the micellar nanostructure of DPDA-10 can be polymerized both in the bulk solution and in the film by UV irradiation. The emission property of DPDA-10 after UV irradiation has been significantly enhanced in comparison to that before polymerization, which may be due to the extension of the conjugated system arising from the transformation of the diacetylene group into polydiacetylene upon polymerization. In addition, the self-organization of DPDA-n is dependent on the spacer length. DPDA-7 with a short spacer length forms an irregular flat sheet structure with many defects; DPDA-15 with a long spacer length forms rodlike micellar structures. Thus, this work may provide a new approach for designing and fabricating organic functional nanostructured materials.  相似文献   

6.
Cylindrical micelles prepared in aqueous solutions from cationic surfactants octadecyl trimethylammonium (OTA+) or cetyltrimethylammonium (CTA+) and parachlorobenzoate (PCB) counterion were successfully imaged after evaporation of water using tapping mode atomic force microscopy (TM-AFM) onto very smooth gold and glass substrates. With the help of the obtained topography AFM images, it was shown that the micellar structures are preserved on gold substrates after evaporation of the solvent despite the new set of stresses due mainly to capillary forces and dehydration. The influence of the substrate on the resulting micellar morphology observed in air was investigated for these two materials: cylindrical micelles were evidenced as loosely adherent on gold surface in the presence of parachlorobenzoate (PCB) and identical, geometrically speaking, to those known to exist in aqueous solutions. In this situation, topographic AFM images allowed us to determine accurately their geometrical characteristics such as diameter and length in the nanometer range. On the other hand, AFM images obtained in air on glass surfaces revealed micellar structures that are different from those existing in the bulk of the solution. Indeed, bilayer-type micelles with a thickness close to twice the surfactant monomer expected length were observed, indicating that the well-established and strong influence of glass on micelle geometry at the glass/solution interface is maintained after evaporation of water. These results have been analyzed on the basis of positive charge of gold deduced from electrochemical impedance spectroscopy (EIS) and Raman spectroscopy measurements on one hand and of the negative charge of glass on the other hand. Although these results appeal to new theoretical considerations dealing with dynamics of evaporation of micellar solution drops and/or with counterion contributions to macromolecular interactions in aqueous solutions and in air, this new AFM imaging method appears to be the more adequate one to image and measure the micelles formed in the presence of water.  相似文献   

7.
Clouding phenomenon in aqueous micellar solutions of an anionic surfactant tetra-n-butylammonium dodecylsulfate (TBADS) has been observed as a function of surfactant concentration. Small-angle neutron scattering (SANS) experiments in these systems show clustering of micelles as the temperature approaches the cloud point (CP). The individual micelles and the clusters of micelles coexist at CP. The clustering of micelles depends on the surfactant concentration and temperature. It is proposed that clustering is due to depletion of H-bonded water present around the butyl chains at the micellar surface. This is associated with entropy gain which is considered to be the major thermodynamic factor related to micellar aggregation. The structures (clusters) that emerge depend on the relative lengths of the alkyl chains of the counterion and can be tuned by the temperature.  相似文献   

8.
The chemical synthesis of the dipeptide acetyl phenyl iso-leucin-amide (AcPheIleNH(2)) in tetradecyl trimethyl ammonium bromide (TTAB)/ heptane/octanol/carbonate buffer reversed micelles is described. The co-existence of the surfactant bounded minute water pools within the bulk organic solvent enables the simultaneous solubilization of the polar (IleNH(2)) and apolar (AcPheOEt) substrates, thus enabling the synthesis to take place at the micellar interface. The synthesis was favored by increasing the micellar interface via an increase in water content and surfactant concentration. The best dipeptide yield (87%) was obtained at 32 degrees C, with the largest concentrations of TTAB (200 mM) and water (1100 mM) tested. The low solubility of the dipeptide in the micellar media further led to the formation and growth of needle-like crystals during synthesis, thus enabling the removal of product from solution.  相似文献   

9.
Surface tension measurements show that at low concentrations a surfactant bearing two ester groups in its chain assembles into small aggregates or else rearranges at the air/water interface to occupy less area per molecule. Only at higher surfactant concentrations do bona fide micelles form. The air/water interface, it is argued, saturates abruptly and cooperatively (as does the aggregation into micelles at the higher concentrations) to give a "critical monolayer concentration". Yet saturation does not reduce the surface tension a great deal. The bulk of surface tension reduction is imparted by monomeric surfactant in the solution via a mechanism that is obscure but may be related in part to the mechanical perturbation of the saturated film during measurement.  相似文献   

10.
We report a study on encapsulation of various amino acids into gas-phase sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) reverse micelles, using electrospray ionization guided-ion-beam tandem mass spectrometry. Collision-induced dissociation of mass-selected reverse micellar ions with Xe was performed to probe structures of gas-phase micellar assemblies, identify solute-surfactant interactions, and determine preferential incorporation sites of amino acids. Integration into gas-phase reverse micelles depends upon amino acid hydrophobicity and charge state. For examples, glycine and protonated amino acids (such as protonated tryptophan) are encapsulated within the micellar core via electrostatic interactions; while neutral tryptophan is adsorbed in the surfactant layer. As verified using model polar hydrophobic compounds, the hydrophobic effect and solute-interface hydrogen-bonding do not provide sufficient driving force needed for interfacial solubilization of neutral tryptophan. Neutral tryptophan, with a zwitterionic structure, is intercalated at the micellar interface between surfactant molecules through complementary effects of electrostatic interactions between tryptophan backbone and AOT polar heads, and hydrophobic interactions between tryptophan side chain and AOT alkyl tails. Protonation of tryptophan could significantly improve its incorporation capacity into gas-phase reverse micelles, and displace its incorporation site from the micellar interfacial zone to the core; protonation of glycine, on the other hand, has little effect on its encapsulation capacity. Another interesting observation is that amino acids of different isoelectric points could be selectively encapsulated into, and transported by, reverse micelles from solution to the gas phase, based upon their competition for protonation and subsequent encapsulation within the micellar core.  相似文献   

11.
采用水溶液均聚合方法,制备了阳离子型表面活性单体(2-丙烯酰胺基)乙基十四烷基二甲基溴化铵(AMC14AB)的均聚物,使用荧光探针法、表面张力测定及电导测定法,重点考察了均聚物P(AMC14AB)在水溶液中的胶束化行为与表面吸附现象.在水溶液中,均聚物P(AMC14AB)呈现单分子链胶束的聚集形态,具有零临界胶束浓度(CMC=0),从开始加入P(AMC14AB)起,水溶液中随即产生单分子链胶束,不存在Krafft温度.P(AMC14AB)在溶液表面也发生表面吸附,使水的表面张力下降,即P(AMC14AB)也具有表面活性;随着浓度增大,表面吸附量增大,水的表面张力持续下降;当表面吸附达到饱和时,表面张力一浓度曲线上出现突变点,该点应该定义为饱和的表面吸附浓度(SSAC),而不应该再称为临界胶束浓度.P(AMC14AB)单分子链胶束溶液对疏水有机物(甲苯)的增溶情况,明显不同于普通小分子表面活性剂十六烷基二甲基溴化铵(CTAB)的多分子胶束溶液,甲苯增溶量-P(AMC14AB)浓度的关系曲线上无突变点,而且对甲苯的增溶能力高于CTAB的多分子胶束溶液.  相似文献   

12.
Mixed micelles formed by zwitterionic surfactant dimethyldodecylammniopropane sulfonate and short-chain phospholipid 1,2-diheptanoyl-sn-glycero-3-phosphocholine in different proportions in an aqueous medium have been studied physicochemically at an air/water interface and in the bulk by using interfacial tension and pyrene fluorescence intensity measurements, respectively. The critical micellar concentration and free energies of micellization and of interfacial adsorption have been determined. The interfacial study reveals that a mixed monolayer is formed at the air/water interface by the adsorption of surfactant and phospholipid monomers. This has been confirmed by evaluating the interfacial parameters; the maximum surface excess, the minimum area per molecule of a surface-active compound, and the Gibbs surface excess related to surface pressure. The nonideality of mixing, expressed in the terms of the regular solution interaction parameter, #, has negative values over the whole mole fraction range. The negative # values indicate the mutual synergism between the surfactant and phospholipid monomers. The equilibrium distribution of components between micelle and monomer phases was evaluated using a theoretical treatment based on excess thermodynamics quantities evaluated by Motomura's formulation.  相似文献   

13.
The water inside reverse micelles can differ dramatically from bulk water. Some changes in properties can be attributed to the interaction of water molecules with the micellar interface, forming a layer of shell water inside the reverse micelle. The work reported here monitors changes in intramicellar water through chemical shifts and signal line widths in 51V NMR spectra of a large polyoxometalate probe, decavanadate, and from infrared spectroscopy of isotopically labeled water, to obtain information on the water in the water pool in AOT reverse micelles formed in isooctane. The studies reveal several things about the reverse micellar water pool. First, in agreement with our previous measurements, the proton equilibrium of the decavanadate solubilized within the reverse micelles differs from that in bulk aqueous solution, indicating a more basic environment compared to the starting stock solutions from which the reverse micelles were formed. Below a certain size, reverse micelles do not form when the polyoxometalate is present; this indicates that the polyanionic probe requires a layer of water to solvate it in addition to the water that solvates the surfactant headgroups. Finally, the polyoxometalate probe appears to perturb the water hydrogen-bonding network in a fashion similar to that in the interior surface of the reverse micelles. These measurements demonstrate the dramatic differences possible for water environments in confined spaces.  相似文献   

14.
The estimation of the C-potential of ionic surfactant micelles may be useful for the study of adsorption of solutes onto the micellar surface, which causes a reduction of the net electrostatic charge. This work presents results on the variation of ζ-potential of alkylsulfate and fatty carboxylate micelles with the bulk concentrations of Al3+ and Ca2+ cations. Combined with results from the literature about the effect of micellar surfactant concentration on reducing surfactant precipitation in the presence of polyvalent cations, these allow to conclude that micelles of anionic surfactants will have a higher chance of electroneutralization of their surface charge by adsorbing cations if the end functional group of the surfactant is smaller.  相似文献   

15.
Simulations based on dissipative particle dynamics are performed to investigate the solubilization mechanism of vesicles by surfactants. Surfactants tend to partition themselves between vesicle and the bulk solution. It is found that only surfactants with suitable hydrophobicity are able to solubilize vesicles by forming small mixed micelles. Surfactants with inadequate hydrophobicity tend to stay in the bulk solution and only a few of them enter into the vesicle. Consequently, the vesicle structure remains intact for all surfactant concentrations studied. On the contrary, surfactants with excessive hydrophobicity are inclined to incorporate with the vesicle and thus the vesicle size continues to grow as the surfactant concentration increases. Instead of forming discrete mixed micelles, lipid and surfactant are associated into large aggregates taking the shapes of cylinders, donuts, bilayers, etc. For addition of surfactant with moderate hydrophobicity, perforated vesicles are observed before the formation of mixed micelles and thus the solubilization mechanism is more intricate than the well-known three-stage hypothesis. As the apparent critical micellar concentration (φ(s,v)(a,CMC)) is attained, pure surfactant micelles form and the vesicle deforms because the distribution of surfactant within the bilayer is no longer uniform. When the surfactant concentration reaches φ(s,v)(p), the vesicle perforates. The extent of perforation grows with increasing surfactant concentration. The solubilization process begins at φ(s,v) (sol), and lipids leave the vesicle and join surfactant micelles to form mixed micelles. Eventually, total collapse of the vesicle is observed. In general, one has φ(s,v)(a,CMC)≤φ(s,v)(p)≤φ(s,v)(sol).  相似文献   

16.
采用1HNMR弛豫、自扩散系数和二维相敏(2DNOESY)实验研究了正十四烷基硫酸钠[n-CH3(CH2)13OSO3Na(STS)]和正十四烷基聚氧乙烯醚(3)[n-CH3(CH2)13O(C2H4O)3H(C14E3)]在溶液中的自聚集以及二者混合后的相互作用.结果表明,STS与C14E3混合后存在相互作用,并形成混合胶束;弛豫实验表明,混合胶束中STS疏水链质子运动更加受阻,C14E3的α-(4″)和β-CH2(3″)处链堆积紧密.C14E3的亲水端(CH2CH20)3链卷曲紧贴在疏水壳表面外链堆积较紧密处.自扩散系数测量表明,混合胶束比单一阴离子表面活性剂形成的胶束大.单一非离子型胶束和混合胶束的亲水端(CH2CH20)3(5″)链构成相应较软和松散的外壳.单一C14E3在极性溶剂氯仿溶液中,质子运动比在水中自由度大,但2DNOESY谱中出现了少量分子间的交叉峰,也可能形成了一些小的聚集体.  相似文献   

17.
The dispersing action of the surfactant (sodium dodecyl sulfate, SDS) on the carbon nanotubes (CNT) in aqueous medium has been studied. Electron microscopy, molecular docking, NMR and IR spectroscopies were applied to determine the physical-chemical properties of CNT dispersions in SDS—water solutions. It was established that micellar adsorption of the surfactant on the surface of carbon material and solubilization of SDS in aqueous medium contribute to improving CNT dispersing in water solutions. It was shown that the non-polar hydrocarbon radicals of a single surfactant molecule form the highest possible number of contacts with the graphene surface. Upon increase of the SDS in solution these radicals form micelles connected with the surface of the nanotubes. At the sufficiently high SDS concentration the nanotube surface becomes covered with an adsorbed layer of surfactant micelles. Water molecules and sodium cations are concentrated in spaces between micelles. The observed pattern of micellar adsorption is somewhat similar to a loose bilayer of surfactant molecules.  相似文献   

18.
The possibility of the oxidative destruction of isononylphenol ethoxylates in micellar solutions with critical micellization concentrations of up to 3.5 by the Ruff system (hydrogen peroxide in the presence of Fe3+ ions) is established in principle. It is shown that iron hydroxocomplex polymerization, which leads to the formation of large colloid particles but does not lower the efficiency of a surfactant oxidation, can proceed in a solution at pH 3–5. It is established that the concentration of micelles in a Neonol solution falls sharply during oxidation at the optimum ratio of surfactant and oxidative reagents, and they virtually disappear at the initial stage of oxidation. In contrast, oxidation results in growth of the sizes of micelles upon a lack of oxidative reagents.  相似文献   

19.
Upon the addition of a short EO chain nonionic surfactant, poly(oxyethylene) dodecyl ether (C12EOn), to dilute micellar solution of sodium dodecyl sulfate (SDS) above a particular concentration, a sharp increase in viscosity occurs and a highly viscoelastic micellar solution is formed. The oscillatory-shear rheological behavior of the viscoselastic solutions can be described by the Maxwell model at low shear frequency and combined Maxwell-Rouse model at high shear frequency. This property is typical of wormlike micelles entangled to form a transient network. It is found that when C12EO4 in the mixed system is replaced by C12EO3 the micellar growth occurs more effectively. However, with the further decrease in EO chain length, phase separation occurs before a viscoelastic solution is formed. As a result, the maximum zero-shear viscosity is observed at an appropriate mixing fraction of surfactant in the SDS-C12EO3 system. We also investigated the micellar growth in the mixed surfactant systems by means of small-angle X-ray scattering (SAXS). It was found from the SAXS data that the one-dimensional growth of micelles was obtained in all the SDS-C12EOn (n=0-4) aqueous solutions. In a short EO chain C12EOn system, the micelles grow faster at a low mixing fraction of nonionic surfactant.  相似文献   

20.
We prepared well‐defined diblock copolymers of thermoresponsive poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) blocks and biodegradable poly(D ,L ‐lactide) blocks by combination of reversible addition‐fragmentation chain transfer radical (RAFT) polymerization and ring‐opening polymerization. α‐Hydroxyl, ω‐dithiobenzoate thermoresponsive polymers were synthesized by RAFT polymerization using hydroxyl RAFT agents. Biodegradable blocks were prepared by ring‐opening polymerization of D ,L ‐lactide initiated by α‐hydroxyl groups of thermoresponsive polymers, which inhibit the thermal decomposition of ω‐dithioester groups. Terminal dithiobenzoate (DTBz) groups of thermoresponsive blocks were easily reduced to thiol groups and reacted with maleimide (Mal). In aqueous media, diblock copolymer products formed surface‐functionalized thermoresponsive micelles. These polymeric micelles had a low critical micelle concentration of 22 μg/L. In thermoresponsive studies of the micelles, hydrophobic DTBz‐surface micelles demonstrated a significant shift in lower critical solution temperature (LCST) to a lower temperature of 30.7 °C than that for Mal‐surface micelles (40.0 °C). In addition, micellar LCST was controlled by changing bulk mixture ratios of respective heterogeneous end‐functional diblock copolymers. Micellar disruption at acidic condition (pH 5.0) was completed within 5 days due to hydrolytic degradation of PLA cores, regardless of showing a slow disruption rate at physiological condition. Furthermore, we successfully improved water‐solubility of hydrophobic drug, paclitaxel by incorporating into the micellar cores. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7127–7137, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号