首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An on-line nickel preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) associated to flow injection (FI) was studied. Trace amounts of nickel were preconcentrated by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The nickel was removed from the minicolumn with 20% nitric acid. An enrichment factor of 80-fold for a sample volume of 50 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 82 ng l−1. The precision for ten replicate determinations at the 0.5 μg l−1 Ni level was 3.0% relative standard deviation (R.S.D.), calculated from the peak heights obtained. The calibration graph preconcentration method for nickel was linear with a correlation coefficient of 0.9997 at levels near the detection limits (DL) up to at least 100 μg l−1. The method was successfully applied to the determination of nickel in natural water samples.  相似文献   

2.
In the present paper, a system for on-line preconcentration and determination of copper by flame atomic absorption spectrometry (FAAS) was developed. It was based on solid phase extraction of copper(II) ions on a minicolumn of Amberlite XAD-2 loaded with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM). The optimisation process was carried out using Doehlert designs. Four variables (sampling flow rate, SR; elution flow rate, buffer concentration, BC; and pH) were regarded as factors in the optimisation. The parameter “sensitivity efficiency (SE)” proposed in this paper, and defined as the analytical signal obtained for an on-line enrichment system for a preconcentration time of 1 min was used as analytical response in the optimisation process. Using the established experimental conditions, the proposed on-line system allowed determination of copper with detection limit (3σ/S) of 0.23 μg l−1, and a precision (repeatability), calculated as relative standard deviation (R.S.D.) of 3.9 and 3.7% for copper concentration of 5.00 and 20.00 μg l−1, respectively. The preconcentration factor obtained is 62. The recovery achieved for copper determination in presence of several cations demonstrated that this has enough selectivity for analysis of food samples. The robustness of the proposed system was also evaluated. The accuracy was confirmed by analysis of the following certified reference materials (CRMs): Rice flour NIES 10a, Spinach leaves NIST 1570a, Apples leaves NIST 1515 and Orchard leaves NBS 1571. This procedure was applied for copper determination in natural food samples.  相似文献   

3.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

4.
Doğutan M  Filik H  Tor I 《Talanta》2003,59(5):1053-1060
A new melamine based polymeric sequestering resin was prepared for preconcentration and separation of hexavalent chromium from water, and its sequestering action was investigated. The water-insoluble, cross-linked sequestering resin was formed by reaction with bromosuccinic acid and cross-linking of melamine. The active sequestering group on the resin is NH-(Succinic acid) or salt thereof. The resulting chelating resin was characterized by infrared spectra. The newly prepared resin quantitatively retained Cr(VI) at pH 2.0-4.0 when the flow rate was maintained between 1 and 5 ml min−1. The retained Cr(VI) was instantaneously eluted with 25 ml of 0.1 M NaOH. The chromium species were determined by a flame atomic absorption spectrometer. The limits of detection for Cr(VI) and Cr(III) were found to be 5.3 and 4.2 μg l−1, respectively. The precision and accuracy of the proposed procedure was checked by the use synthetic and reference steel samples. The established preconcentration method was successfully applied to the determination and selective separation of Cr(VI) in electroplating industry wastewater. Total concentrations determined by the spectrophotometric method (110.3±0.6 g l−1 Cr(VI) and 1.2±0.3 g l−1 Cr(III)) are compared with those found by FAAS and the obtained results (110.4±1.8 g l−1 Cr(VI) and 1.4±0.5 g l−1 Cr(III)) show good agreement.  相似文献   

5.
An on-line zinc preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The zinc was precipitated and retained on a minicolumn filled with ethyl vinyl acetate (EVA) at pH 9.0, without using any complexing reagent. The zinc ions were eluted from the minicolumn with 10% (v/v) hydrochloric acid. Experimental conditions including pH and sample loading and eluting variables were evaluated and established.An enrichment factor (EF) of 44 was obtained for Zn2+ with a preconcentration time of 120 s. Under the optimal conditions, the value of the limit of detection (3σ) for the preconcentration of 10 mL of sample was 0.08 μg L− 1. The sampling frequency was about 24 h− 1. The precision for six replicate determinations (repeatability conditions) at 50 μg L− 1 Zn level was 3.94% relative deviation standard (RSD), calculated from the peak heights obtained. The methodology was successfully applied to the determination of zinc in tap water samples and in a certified VKI reference material QC Metal LL1 DHI (Water & Environment) Denmark.  相似文献   

6.
Lemos VA  Baliza PX 《Talanta》2005,67(3):564-570
A new functionalized resin has been applied in an on-line preconcentration system for copper and cadmium determination. Amberlite XAD-2 was functionalized by coupling it to 2-aminothiophenol (AT-XAD) by means of an NN spacer. This resin was packed in a minicolumn and used as sorbent in the on-line system. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer-burner system of the flame atomic absorption spectrometer (FAAS). Elution of Cd(II) and Cu(II) from minicolumn can be made with 0.50 mol l−1 HCl or HNO3. The enrichment factors obtained were 28 (Cd) and 14 (Cu), for 60 s preconcentration time, and 74 (Cd) and 35 (Cu), if used 180 s preconcentration time. The proposed procedure allowed the determination of cadmium and copper with detection limits of 0.14 and 0.54 μg l−1, respectively, when used preconcentration periods of 180 s. The effects of foreign ions on the adsorption of these metal ions are reported. The validation of the procedure was carried out by analysis of certified reference material. This procedure was applied to cadmium and copper determination in natural, drink and tap water samples.  相似文献   

7.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

8.
Iglesias M  Anticó E  Salvadó V 《Talanta》2003,59(4):651-657
A preconcentration method is developed for the on-line determination of palladium in complex matrices with flame atomic absorption spectrometry (FAAS). The flow system comprised of a minicolumn filled with polyamine Metalfix-Chelamine resin which is highly selective for Pt(IV), Au(III) and Pd(II). Best preconcentration conditions are established by testing different resin quantities, sample and eluent solution volumes, and adsorption and elution steps flow rates. Sample volumes of 4.7 ml of palladium solutions resulted in an enrichment factor of twenty at the optimum hydrodynamic conditions. This value can be increased by injecting larger volumes of sample solution. The method is sensitive, easy to operate and permitted the determination of sub-mg l−1 levels of palladium with a detection limit of 0.009 mg l−1. The resin was used up to 60 times in consecutive retention-elution cycles without any appreciable deterioration in its performance. The applicability of this method was tested by determining the palladium content in synthetic geological samples as well as in the pellet-type used car catalyst reference material.  相似文献   

9.
This study presents a new procedure for the determination of trace levels of copper(II) in an aqueous matrix, through flow injection (FI) on-line preconcentration with a minicolumn packed with silica gel modified with 3(1-imidazolyl)propyl groups. After the preconcentration stage, the analyte was eluted with a HNO3 solution and determined by flame atomic absorption spectrometry (FAAS). The measurements of the analytical signals were carried out as peak area and peak height with the objective of evaluating the most appropriate absorption measurement for the proposed method. Four procedures to calculate the experimental enrichment factor (EF) were also studied. For a preconcentration time of 90 s the enrichment factors found in this study varied between 19.5-25.8 and 36.2-42.2 for peak area and peak height, respectively. The precision of the proposed method was calculated for a solution containing 20 μg l−1 of Cu(II), when 11.2 ml of solution was preconcentrated (n=7), and their respective relative standard deviation (R.S.D.) values were 1.2 and 1.4% for peak area and peak height, respectively. The detection limits obtained were 0.4 and 0.2 μg l−1 of Cu(II) for peak area and peak height, respectively, with a preconcentration time of 90 s. The on-line preconcentration system accuracy was evaluated through a recovery test on the aqueous samples and analysis of a certified material.  相似文献   

10.
An on-line flow injection (FI) preconcentration-electrothermal atomic absorption spectrometry (ETAAS) method is developed for trace determination of chromium in drinking water samples by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The chromium was removed from the minicolumn with 1.0% (v/v) nitric acid. An enrichment factor (EF) of 35-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 3.0 ng l−1. The precision for 10 replicate determinations at the 0.5 μg l−1 Cr level was 4.0% relative standard deviation (R.S.D.), calculate with the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9992 at levels near the detection limits up to at least 50 μg l−1. The method was successfully applied to the determination of Cr(III) and Cr(VI) in drinking water samples.  相似文献   

11.
《Analytica chimica acta》2003,481(2):283-290
In the present paper, an on-line system for preconcentration and determination of zinc by Flame Atomic Absorption Spectrometry (FAAS) is proposed. It is based in the sorption of zinc(II) ions on a minicolumn packed with polyurethane foam loaded with 2-[2′-(6-methyl-benzothiazolylazo)]-4-bromophenol (Me-BTABr) reagent. Chemical and flow variables as pH effect, sample flow rate and eluent concentration were optimized using univariate methodology. The results demonstrated that zinc can determinate using the sample pH in the range of 6.5-9.2, sample flow rate of 6.0 ml min−1, and the elution step using 0.10 mol l−1 hydrochloric acid solution at flow rate of 5.5 ml min−1. In these conditions, an enrichment factor of 23 and a sampling rate of 48 samples per hour were achieved. The detection limit (DL, 3σ) as IUPAC recommendation was 0.37 μg l−1 and the precision (assessed as the relative standard deviation, R.S.D.) reached values of 5.9-1.8% in zinc solutions of 1.0-10.0 μg l−1 concentration, respectively. The method was successfully applied to the determination of trace amounts of zinc in natural water samples from Salvador (Brazil).  相似文献   

12.
Three automated flow-injection systems are proposed for the determination of traces of manganese(II), lead and copper(II) in waters. The first system utilizes the catalytic effect of manganese(II) on the oxidation of N,N-diethylaniline by potassium periodate at pH 6.86–7.10 (30°C) and is used for spectrophotometric determination at 475 nm in the range 0.02–1.00 μg1?1; the system involves reagent injection and stopped flow. The determination of lead in the range 0.7–100 μg1?1 is based on spectrophotometric detection of the lead 4/(2-pyridylazo)resorcinol complex at 525 nm after on-line preconcentration of the sample (5–50 ml) on a minicolumn filled with Chelex-100 or Dowex 1-X8 resin. A potentiometric flow-injection system with a copper ion-selective electrode is applied for the determination of 0.5–1000 μg 1?1 copper(II) after on-line preconcentration of 50–500 ml of sample on Chelex-100 resin. The procedures are tested on synthetic and real water samples, including sea water and waste-waters.  相似文献   

13.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

14.
A simple, selective and reliable method for rapid extraction and determination of trace amounts of Cu (II) ions from aqueous samples using octadecyl-bonded silica membrane disks modified with bis-(3-methoxy salicylaldehyde)-1,6-diaminohexane and flame atomic absorption spectrometry (FAAS) is presented. Extraction efficiency, the influence of pH, flow rates, amount of ligand, and type and least amount of eluant were investigated. The linear dynamic range of the proposed method for Cu (II) ions was found in a wide concentration range of 1.0 (± 0.2)–150 (± 2) μg l− 1. The detection limit and preconcentration factor of this method were found 30.0 (± 0.7) ng l− 1 and 100 respectively. The reproducibility of the procedure is at the most 2.0%. The effects of various cationic interferences on the percent recovery of copper ion were studied. The method was used to the recovery of copper ion from different synthetic, alloys and biological samples.  相似文献   

15.
A new chelating sorbent has been developed using Amberlite XAD-2 resin anchored with pyrocatechol through –N=C– group. This sorbent, characterised by elemental analysis and infrared (IR) spectra, was used as packing for the minicolumn in an on-line system preconcentration system for cadmium, cobalt, copper and nickel determination. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer–burner system of the flame atomic absorption spectrometer (FAAS). Elution of all metals from minicolumn can be made with 0.50 mol L 1 HCl or HNO3. The enrichment factors obtained were 16 (Cd), 24 (Co), 15 (Cu) and 19 (Ni), for 60 s preconcentration time, and 39 (Cd), 69 (Co), 36 (Cu) and 41 (Ni), if used 180 s preconcentration time. Under the optimum conditions, the proposed procedure allowed the determination of cadmium, cobalt, copper and nickel with detection limits of 0.31, 0.32, 0.39 and 1.64 μg L 1, respectively, when used preconcentration periods of 180 s. The accuracy of the developed procedure was sufficient and evaluated by the analysis of the certified reference materials NIST 1515 apple leaves and NIST 1570a spinach leaves. The method was applied to the analysis of food samples (spinach, black tea and rice flour).  相似文献   

16.
An on-line preconcentration procedure for the determination of bismuth by flame atomic absorption spectrometry (FAAS) has been described. Lewatit TP-207 chelating resin, including iminodiacetate group, packed in a minicolumn was used as adsorbent material. Bi(III) was sorbed on the chelating resin, from which it could be eluted with 3 mol L−1 HNO3 and then introduced directly to the nebulizer-burner system of FAAS. Best preconcentration conditions were established by testing different resin quantities, acidity of sample, types of eluent, sample and eluent solution volumes, adsorption and elution flow rates, and effect of interfering ions. The detection limit of the method was 2.75 μg L−1 while the relative standard deviation was 3.0% for 0.4 μg mL−1 Bi(III) concentration. The developed method has been applied successfully to the determination of bismuth in pharmaceutical cream, standard reference materials and various natural water samples with satisfactory results.  相似文献   

17.
This paper presents a method whereby trace elements in NH4Cl-NH3 medium are adsorbed on activated carbon in a micro-flow-injection (FI) semi-online sorbent extraction preconcentration system and then determined by graphite furnace atomic absorption spectrometry (GFAAS). The analytical performance of the proposed method for determining Cd, Mn and Pb was studied. A microcolumn packed with activated carbon was used as a preconcentration column (PCC). The metals to be determined were preconcentrated onto the column for 60 s and then rinsed with 0.02% (v/v) HNO3 and eluted with 30 μl of 2 mol l−1 HNO3. Compared with the direct injection of 30 μl of aqueous sample solution, enrichment factor of 32, 26, and 21 and detection limits (3σ) of 0.4, 4.7, and 7.5 ng l−1 for Cd, Mn and Pb, respectively, were obtained with 60 s sample loading at 3.0 ml min−1 for sorbent extraction, 30 μl of eluate injection, and peak area measurement. The precisions (RSD, n=6) were 2.8% at the 0.05 μg l−1 level for Cd, 3.0% at the 0.3 μg l−1 level for Mn, and 3.1% at the 0.5 μg l−1 level for Pb. The experimental results indicate that the procedure can eliminate the fundamental interferences caused by alkali and alkaline earth metals and the application of it to the determination of Cd, Mn and Pb in some water samples is successful.  相似文献   

18.
A method for preconcentration and determination of trace amounts of cadmium in high saline samples is described. It is based on the adsorption of the metal in the activated carbon as complex cadmium(II)-4-(2-pyridylazo-resorcinol) (PAR). The final determination was carried by flame atomic absorption spectrometry (FAAS). The optimization of extraction parameters such as the pH effect, PAR mass, activated carbon mass and shaking time was carried out using a two-level full factorial design (24) and two Doehlert matrix designs. The results of the factorial design, considering the analysis of variance (ANOVA), demonstrate that all these factors are statistically significant, as well as the interactions (pH×PAR mass), (pH×activated carbon mass) and (activated carbon mass×shaking time). The final optimization was carried out using Doehlert matrix designs considering the results of the factorial design. The recoveries were quantitative (96.0-106.7%) for seawater samples spiked with Cd at concentrations of 0.125 and 0.625 μg l−1. A preconcentration factor of 149 was obtained. The effect of diverse metallic ions on the proposed procedure was investigated too. The procedure was used for cadmium determination in surface seawater samples collected in Salvador City, Brazil. The cadmium content in the analysed samples varies from 0.035 to 0.17 μg l−1. These results are agreement with other data reported in the literature.  相似文献   

19.
Hashemi P  Bagheri S  Fat'hi MR 《Talanta》2005,68(1):72-78
An agarose-based anion exchanger (Q-Sepharose) was loaded with chromotropic acid (CTA) and used for column preconcentration and determination of copper by flame AAS. Preliminary experiments indicated that a sample pH of 5.7-6.5 is best suited for accumulation of copper and a 2.5 ml portion of a 0.02 mol l−1 HCl solution can efficiently desorb the analyte from the column. An incomplete factorial design was used for optimization of five different variables that affect recovery of copper. The results indicated that ionic strength, pH and sample volume variables are the most important effects, respectively. Hence, these variables and their possible interactions were studied more carefully. In optimized conditions, the column could tolerate up to 0.18 mol l−1 sodium nitrate in the matrix. A 5 ml portion of a 0.02 mol l−1 CTA was sufficient for loading of a 0.5 ml column prior to preconcentration of copper from a 150 ml sample solution. Matrix ions of Ca2+, Mg2+, Na+ and K+ and potentially interfering ions of Pb2+, Ni2+, Cd2+, Co2+, Zn2+ and Mn2+ with relatively high concentrations did not have any significant effect on the recovery of the analyte. A preconcentration factor of 60 and a detection limit of 1.0 μg l−1 was obtained for the determination of copper by the flame AAS method. A precision better than 2.5%, expressed as R.S.D., was also achieved. Application of the method to tap water and two different river water samples resulted in values well confirmed by direct determinations with ET-AAS.  相似文献   

20.
3-Amino-1,2,4-triazole (amitrole) is a widely used pesticide, with many difficulties to be analyzed at the regulatory level in drinking water, because its high solubility in water. This paper describes a simple and fast method for the simultaneous determination of amitrole and atrazin-2-hydroxy, principal degradation product of s-triazines, by capillary zone electrophoresis. Separation and determination of these herbicides in water samples was performed in 0.02 mol l−1 phosphate buffer at pH 3.2. The method allows determination of the amitrole and atrazin-2-hydroxy in water samples in concentration lower than 100 μg l−1. The detection limits using a previous preconcentration step of amitrole in Alberche River (Comunidad Autónoma de Madrid, Spain) and drinking water spiked samples was of 4 μg l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号