首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2009年   2篇
  2008年   1篇
  2005年   2篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Lemos VA  Baliza PX 《Talanta》2005,67(3):564-570
A new functionalized resin has been applied in an on-line preconcentration system for copper and cadmium determination. Amberlite XAD-2 was functionalized by coupling it to 2-aminothiophenol (AT-XAD) by means of an NN spacer. This resin was packed in a minicolumn and used as sorbent in the on-line system. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer-burner system of the flame atomic absorption spectrometer (FAAS). Elution of Cd(II) and Cu(II) from minicolumn can be made with 0.50 mol l−1 HCl or HNO3. The enrichment factors obtained were 28 (Cd) and 14 (Cu), for 60 s preconcentration time, and 74 (Cd) and 35 (Cu), if used 180 s preconcentration time. The proposed procedure allowed the determination of cadmium and copper with detection limits of 0.14 and 0.54 μg l−1, respectively, when used preconcentration periods of 180 s. The effects of foreign ions on the adsorption of these metal ions are reported. The validation of the procedure was carried out by analysis of certified reference material. This procedure was applied to cadmium and copper determination in natural, drink and tap water samples.  相似文献   
2.
In this work, Amberlite XAD-2 resin functionalized with 4,5-dihydroxy-1,3-benzenedisulfonic acid was synthesized, characterized and applied as a new packing material for an on-line system to nickel preconcentration. The method is based on the sorption of Ni(II) ions in a minicolumn containing the synthesized resin, posterior desorption using an acid solution and measurement of the nickel by spectrophotometry (PAR method). The optimization of the system was performed using factorial design and Doehlert matrix considering five variables: eluent concentration, PAR solution pH, sample flow rate, PAR solution concentration and sample pH. Signals were measured as peak height by using an instrument software. Using the experimental conditions defined in the optimization, the method allowed nickel determination with achieved sampling rate of 25 samples per hour, detection limit (3 s) of 2 μg l−1 and precision (assessed as the relative standard deviation) of 8.2-2.6%, for nickel solutions of 10.0-200.0 μg l−1 concentration, respectively. The experimental enrichment factor of the proposed system was 46, for 120 s preconcentration time. The proposed procedure was applied for nickel determination in food samples. Recoveries of spike additions (5 or 10 μg g−1) to food samples were quantitative (94-110%).  相似文献   
3.
In this work, a procedure for preconcentration of cobalt using dispersive liquid–liquid microextraction (DLLME) with the reagent Br-TAO as complexing reagent was developed. The procedure is based on a ternary system of solvents, where appropriate amounts of the extraction solvent, disperser solvent and the chelating agent Br-TAO are directly injected into an aqueous solution containing Co(II). A cloudy mixture is formed and the ions are extracted in the fine droplets of the extraction solvent. After extraction, the phase separation is performed with a rapid centrifugation, and cobalt is determined in the enriched phase by FAAS. Under the optimized conditions, the detection limit obtained was 0.9 µg L− 1. The enrichment factor and the consumptive index were 16 and 0.31 mL, respectively. The accuracy of the method was tested by the determination of cobalt in certified reference material of spinach leaves, NIST 1570a. The proposed procedure was successfully applied to the determination of cobalt in water samples.  相似文献   
4.
A preconcentration method for manganese determination by sequential injection cloud point extraction with subsequent detection by flame atomic absorption spectrometry (FAAS) has been developed. The enrichment of Mn was performed after a preliminary on-line cloud point extraction and entrapment of manganese-containing surfactant aggregated within a minicolumn packed with cotton. The laboratory-made reagent 4-(5′-bromo-2′-thiazolylazo)orcinol (Br-TAO) and the surfactant Triton X-114 were used for cloud point extraction. The manganese ions were eluted with sulphuric acid solution and directly introduced into the FAAS. Chemical and flow variables affecting the preconcentration were studied. Using a sample volume of 2.80 mL the limit of detection and enrichment factor were calculated to be 0.5 μg L−1 and 14, respectively. The sample frequency is 48 h−1, considering a total run cycle of 75 s. The accuracy of the proposed method has been demonstrated by the analysis of the certified reference biological materials rice flour and tomato leaves. The method has been applied to determination of manganese in food samples.  相似文献   
5.
Pyridylazo and thiazolylazo reagents are synthetic dyes widely used in analytical chemistry. These reagents are also very attractive for use in preconcentration systems. This paper covers the application of pyridylazo and thiazolylazo reagents in flow injection systems for the determination of metals. The article discusses flow injection preconcentration systems with solid-phase extraction, precipitation and cloud point extraction. The use of pyridylazo and thiazolylazo reagents in flow injection detection systems is also presented. The relative advantages and drawbacks of these systems are discussed. The application of pyridylazo and thiazolylazo reagents in new systems is presented in the concluding part of this review article.  相似文献   
6.
An on-line system for preconcentration and determination of copper at μg l−1 level by flame atomic absorption spectrometry (FAAS) is proposed. Amberlite XAD-2 functionalized with 3,4-dihydroxybenzoic acid packed in a minicolumn was used as sorbent. Copper(II) ions were sorbed in the minicolumn, from which it could be eluted by hydrochloric acid solution directly to the nebulizer-burner system of the FAAS. Eluent solution was carried by water at a flow rate of 5.00 ml min−1. Signals were measured as peak height by using an instrument software. Achieved sampling rate was 27 samples per hour. Analytical parameters were evaluated and the results demonstrated that copper can be determined, with acetate buffer to adjust the sample pH at 6.0, preconcentration time of 120 s and a sample flow rate of 6.50 ml min−1. The desorption was carried out with 30 μl of a 1.0 mol l−1 hydrochloric acid solution. An enrichment factor of 33 in 13.00 ml of sample (120 s preconcentration time) was achieved by using the time-based technique. The detection limit (DL) (3 s) was 0.27 μg l−1 and the precision (assessed as the relative standard deviation) reached values of 5.7-1.1% in copper solutions of 5.00 to 50.00 μg l−1 concentration, respectively. The accuracy of procedure was confirmed by copper determination in certified reference materials. Recoveries of spike additions (1.0 or 2.0 μg g−1) to food samples were quantitative (90.0-110.0%). These results proved also that the procedure is not affected by matrix interference and can be applied satisfactorily for copper determination in rice flour and starch samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号