首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study a new method for determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. Flow and chemical variables of the proposed system were optimized through multivariate designs. The limit of detection for cadmium was 5.50 μg L−1 and the precision was below 2.3% (35.0 μg L−1, n = 9). The analytical curve was linear from 5 to 150 μg L−1, with a correlation coefficient of 0.9993. The developed method was successfully applied to spiked alcohol fuel, and accuracy was assessed through recovery tests, with recovery ranging from 97.50 to 100%.  相似文献   

2.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

3.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

4.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

5.
A simple, sensitive and inexpensive flow injection solid phase extraction (SPE) system was developed for automatic determination of trace level concentrations of metals. The potentials of this novel scheme, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace cadmium and lead determination in environmental water samples. The method was based on on-line chelate complex formation of target species with ammonium diethyldithiophosphate (DDTP), retention onto the surface of reversed-phase poly(divinylbenzene-N-vinylpyrrolidone) co-polymeric beads (Oasis HLB) and elution with methanol prior to atomization. A special PVC adapter was designed for easy and rapid replacement of the commercially available SPE cartridge. All main chemical and hydrodynamic parameters affecting the complex formation, sorption and elution of the analyte were optimized thoroughly. Moreover, the effect of potential interfering species occurring in environmental samples was also explored.For 90 s preconcentration time, enhancement factors of 155 and 180, detection limits (3s) of 0.09 μg L− 1 and 0.9 μg L− 1 and relative standard deviations (R.S.D.) of 2.9% (at 4.0 μg L− 1) and 2.6% (at 20.0 μg L− 1) were obtained for cadmium and lead, respectively, with a sample throughput of 24 h− 1. The measurement trueness of the developed method was evaluated by analyzing a certified reference material and spiked environmental water samples. The proposed method is well suited to detect the target elements at concentration levels below the maximum allowed concentrations endorsed by the European Framework Directive (2008/105/EC) in inland and coastal waters.  相似文献   

6.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

7.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

8.
Jakmunee J  Junsomboon J 《Talanta》2008,77(1):172-175
An anodic stripping voltammetric method has been developed for determination of cadmium, lead, copper and zinc in acetic acid extract of glazed ceramic surfaces. An aliquot of 4% (v/v) acetic acid solution was kept in a ceramic ware for 24 h in the dark, then 10 mL of the extracted solution was placed in a voltammetric cell. The solution was purged with oxygen free nitrogen gas for 3 min before deposition of the metals was carried out by applying a constant potential of −1.20 V versus Ag/AgCl to the hanging mercury drop electrode (HMDE) for 45 s. A square wave waveform was scanned from −1.20 to 0.15 V and a voltammogram was recorded. A standard addition procedure was used for quantification. Detection limits of 0.25, 0.07, 2.7 and 0.5 μg L−1 for cadmium, lead copper and zinc, respectively, were obtained. Relative standard deviations for 11 replicate determinations of 100 μg L−1 each of all the metals were in the range of 2.8-3.6%. Percentage recoveries obtained by spiking 50 μg L−1 of each metal to the sample solution were in the range of 105-113%. The method was successfully applied to ceramic wares producing in Lampang province of Thailand. It was found that the contents of cadmium, lead, copper and zinc released from the samples were in the range of <0.01-0.16, 0.02-0.45, <0.14 and 0.28-10.36 μg dm−2, respectively, which are lower than the regulated values of the Thai industrial standard. The proposed method is simpler, more convenient and more sensitive than the standard method based on FAAS.  相似文献   

9.
A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L−1 and 3.3% for lead and 0.12 μg L−1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.  相似文献   

10.
This work presents an evaluation of iron and cadmium adsorption in sediment of the Furnas Hydroelectric Plant Reservatory located in Alfenas, Minas Gerais (Brazil). The metal determination was done employing a flow injection analysis (FIA) with an on-line filtering system. As detection techniques, flame atomic absorption spectrometry (FAAS) for iron and thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for cadmium determinations were used. The developed methodology presented good limits of detection, being 190 μg L−1 for iron and 1.36 μg L−1 for cadmium, and high sampling frequency for both metals 144 and 60 readings h−1 for iron and cadmium, respectively. Both metals obey the Langmuir model, with maximum adsorptive capacity of 0⋅169 mg g−1 for iron and 7⋅991 mg g−1 for cadmium. For iron, a pseudo-first-order kinetic model was obtained with a theoretical Qe = 9⋅8355 mg g−1 (experimental Qe = 9⋅5432 mg  g−1), while for cadmium, a pseudo-second-order kinetic model was obtained, with a theoretical Qe = 0.3123 mg g−1 (experimental Qe = 0⋅3052 mg g−1).  相似文献   

11.
A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g−1 and the relative standard deviation (R.S.D.) for 10 replicates at 10 μg L−1 Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 μg g−1.  相似文献   

12.
Yu HM  Song H  Chen ML 《Talanta》2011,85(1):625-630
A novel adsorbent-silica gel bound dithizone (H2Dz-SG) was prepared and used as solid-phase extraction of copper from complex matrix. The H2Dz-SG is investigated by means of FT-IR spectra and the SEM images, demonstrating the bonding of dithizone. The H2Dz-SG quantitatively adsorb copper ions, and the retained copper is afterwards collected by elution of 10% (v/v) nitric acid. An on-line flow injection solid-phase extraction procedure was developed for trace copper separation and preconcentration with detection by flame atomic spectrometry. By loading 5.4 mL of sample solution, a liner range of 0.5-120 μg L−1, an enrichment factor of 42.6, a detection limit of 0.2 μg L−1 and a precision of 1.7% RSD at the 40 μg L−1 level (n = 11) were obtained, along with a sampling frequency of 47 h−1. The dynamic sorption capacity of H2Dz-SG to Cu2+ was 0.76 mg g−1. The accuracy of the proposed procedure was evaluated by determination of copper in reference water sample. The potential applications of the procedure for extraction of trace copper were successfully accomplished in water samples (tap, rain, snow, sea and river). The spiking recoveries within 91-107% are achieved.  相似文献   

13.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

14.
An on-line preconcentration procedure for the determination of bismuth by flame atomic absorption spectrometry (FAAS) has been described. Lewatit TP-207 chelating resin, including iminodiacetate group, packed in a minicolumn was used as adsorbent material. Bi(III) was sorbed on the chelating resin, from which it could be eluted with 3 mol L−1 HNO3 and then introduced directly to the nebulizer-burner system of FAAS. Best preconcentration conditions were established by testing different resin quantities, acidity of sample, types of eluent, sample and eluent solution volumes, adsorption and elution flow rates, and effect of interfering ions. The detection limit of the method was 2.75 μg L−1 while the relative standard deviation was 3.0% for 0.4 μg mL−1 Bi(III) concentration. The developed method has been applied successfully to the determination of bismuth in pharmaceutical cream, standard reference materials and various natural water samples with satisfactory results.  相似文献   

15.
This work exploited a sequential injection lab-on-valve (LOV) system for the determination of cadmium by anodic stripping voltammetry (ASV). A miniaturized electrochemical flow cell (EFC) was fabricated in LOV, in which a nafion coated bismuth film electrode was used as working electrode. The cadmium was electrodeposited on the electrode surface in bismuth solution, and measured with the subsequential stripping scan. Under optimal conditions, the proposed system responded linearly to cadmium concentrations in a range 2.0-100.0 μg L−1. The detection limit of this method was found to be 0.88 μg L−1. By loading a sample volume of 800 μL, a sampling frequency of 22 determinations h−1 was achieved. The repeatability expressed as relative standard derivation (R.S.D.) was 3.65% for 20 μg L−1 cadmium (n = 11). The established method was applied to analysis of trace cadmium in environmental water samples and the spiked recoveries were satisfactory.  相似文献   

16.
Alireza Mohadesi 《Talanta》2007,72(1):95-100
An electrochemical sensor for the detection of copper(II) ions is described using a meso-2,3-dimercaptosuccinic acid (DMSA) self-assembled gold electrode. First in ammonia buffer pH 8, copper(II) ions complex with self-assembled monolayer (SAM) via the free carboxyl groups on immobilized meso-2,3-dimercaptosuccinic acid (accumulation step). Then, the medium is exchanged to acetate buffer pH 4.6 and the complexed Cu(II) ions are reduced in negative potential of −0.3 V (reduction step). Following this, reduced coppers are oxidized and detected by differential pulse (DP) voltammetric scans from −0.3 to +0.7 V (stripping step). The effective parameters in sensor response were examined. The detection limit of copper(II) was 1.29 μg L−1 and R.S.D. for 200 μg L−1 was 1.06%. The calibration curve was linear for 3-225 μg L−1 copper(II). The procedure was applied for determination of Cu(II) to natural waters and human hairs. The accuracy and precision of results were comparable to those obtained by flame atomic absorption spectroscopy (FAAS).  相似文献   

17.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

18.
A novel automatic sequential injection (SI) single-drop micro-extraction (SDME) system is proposed as versatile approach for on-line metal preconcentration and/or separation. Coupled to electrothermal atomic absorption spectrometry (ETAAS) the potentials of this SI scheme are demonstrated for trace cadmium determination in water samples. A non-charged complex of cadmium with ammonium diethyldithiophosphate (DDPA) was produced and extracted on-line into a 60 μL micro-drop of di-isobutyl ketone (DIBK). The extraction procedure was performed into a newly designed flow-through extraction cell coupled on a sequential injection manifold. As the complex Cd(II)-DDPA flowed continuously around the micro-droplet, the analyte was extracting into the solvent micro-drop. All the critical parameters were optimized and offered good performance characteristics and high preconcentration ratios. For 600 s micro-extraction time, the enhancement factor was 10 and the sampling frequency was 6 h−1. The detection limit was 0.01 μg L−1 and the precision (RSD at 0.1 μg L−1 of cadmium) was 3.9%. The proposed method was evaluated by analyzing certified reference material.  相似文献   

19.
A highly selective sequential injection (SI) method for the automated determination of weak-acid-dissociable cyanides is reported. The analytical procedure is based on the on-line reaction of the analyte with ninhydrin in carbonate medium to form a coloured product (λmax = 510 nm). Cyanides are removed from sample matrix by acidification through a gas-diffusion step incorporated in the SI manifold. The effect of instrumental and chemical variables was studied. By adopting an on-line standard addition protocol, the sensitivity of the proposed method was enhanced drastically, without affecting the determination range. The assay was validated in terms of linearity (up to 200 μg L−1), limit of detection (cL = 2.5 μg L−1), limit of quantitation (cQ = 7.5 μg L−1), precision (sr < 2.5% at 100 μg L−1) and selectivity. High tolerance against critical species such as sulfides and thiocyanates was achieved. The applicability of the method was demonstrated by analyzing tap and mineral water samples at levels below the limits established by international E.U. and U.S. organizations. The percent recoveries were satisfactory in all cases, ranging between 94.2 and 103.6%.  相似文献   

20.
The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 μL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals.Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 μg L−1 with a detection limit of 0.5 μg L−1. The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 μg L−1 of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 μg L−1 ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号