首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(3‐chlorophenylcarbamoyl) phenyl acetate were studied. Vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes and the normal modes are assigned by potential energy distribution (PED) calculations. Simultaneous IR and Raman activation of the CO stretching mode shows the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with the reported values. Analysis of the phenyl ring modes shows that C C stretching mode is equally active as strong bands in both IR and Raman, which can be interpreted as the evidence of intramolecular charge transfer via conjugated ring path and is responsible for hyperpolarizability enhancement leading to nonlinear optical activity. The red‐shift of the NH‐stretching wavenumber in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(4‐bromophenylcarbamoyl)phenyl acetate were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighbouring oxygen atom. The simultaneous IR and Raman activations of the CO stretching mode give the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with similar reported structures. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non‐linear optics. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐fluoro‐N‐(2‐hydroxy‐4‐nitrophenyl)benzamide were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red‐shift of the NH‐stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO‐stretching mode gives the charge transfer interaction through a π‐conjugated path. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The FT‐IR and FT‐Raman spectra of anilinium sulfate were recorded and analyzed. The surface‐enhanced Raman scattering (SERS) was recorded from a silver electrode. The vibrational wavenumbers of the compound have been computed using the Hartree‐Fock/6‐31G* basis and compared with the experimental values. The molecule is adsorbed on the silver surface with the benzene ring in a tilted orientation. The presence of amino and sulfate group vibrations in the SERS spectrum reveal the interaction between amino and sulfate groups with the silver surface. The direction of the charge transfer contribution to SERS has been discussed from the frontier orbital theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Fourier transform (FT)‐Raman and Fourier transform infrared (FT‐IR) spectra of 3‐{[(4‐fluorophenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using the B3LYP/6‐31G* basis and compared with the experimental data. The prepared compound was identified by NMR and mass spectra. The simultaneous IR and Raman activation of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability and infrared intensities are reported. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The Fourier transform Raman (FT‐Raman) and Fourier transform infrared (FT‐IR) spectra of 2‐[acetyl(4‐bromophenyl)carbamoyl]‐4‐chlorophenyl acetate were studied. The vibrational wavenumbers were examined theoretically using the Gaussian03 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. The simultaneous Raman and infrared (IR) activations of the CO stretching mode in the carbamoyl moiety show a charge transfer interaction through a π‐conjugated path. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of the CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability and predicted IR intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar structures, which makes this compound an attractive object for future studies of nonlinear optics. Optimized geometrical parameters of the compound are in agreement with similar reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
FT‐IR and FT‐Raman spectra of methyl(2‐methyl‐4,6–dinitrophenylsulfanyl)ethanoate (MDIE) were recorded and analyzed. Surface‐enhanced Raman scattering (SERS) spectra were recorded in silver colloid and silver electrode. The vibrational wavenumbers were computed using HF/6‐31G* and B3LYP/6‐31G* basis. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared and Raman spectroscopies as well as in SERS of the studied molecule. The first hyperpolarizability and infrared intensities are reported. The geometrical parameters of the title compound are in agreement with the reported similar derivatives. The presence of new bands at 1045 and 948 cm−1 in the SERS spectrum in silver electrode is related to the change in orientation of the molecule with respect to the metal surface. In silver colloid SERS spectrum, the methyl group attached to the methoxy carbonyl group is close to the metal surface, whereas on silver electrode the methyl group attached to the phenyl ring is close to the metal surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Fourier transform infrared (FT‐IR) and Fourier transform (FT) Raman spectra of 3‐{[(2‐hydroxyphenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using HF/6‐31G* and 6‐311G* basis sets and compared with experimental data. The assignments of the normal modes are done by potential energy distribution (PED)calculations. The prepared compound was identified by nuclear magnetic resonance (NMR) and mass spectra. Optimized geometrical parameters of the title compound are in agreement with reported structures. Shortening of CN bond lengths reveal the effect of resonance. The simultaneous IR and Raman activations of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability, infrared intensities and Raman activities are reported. The phenyl C C stretching modes are equally active as strong bands in both IR and Raman spectra, which are responsible for hyperpolarizability enhancement leading to nonlinear optical activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The IR and Raman spectra of ethyl salicylate were recorded and analyzed. The surface enhanced Raman scattering (SERS) spectrum was recorded in a silver colloid. The vibrational wavenumbers of the compound have been computed using the Hartree‐Fock/6‐31G* basis. The direction of charge transfer contribution to SERS has been discussed from the frontier orbital theory. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface and the presence of ring vibrations and out‐of‐plane ring modes in the SERS spectrum suggests a flat orientation of the molecule on the silver surface. The first hyperpolarizability is calculated and the calculated molecular geometry has been compared with the reported similar structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Vibrational spectral analysis was carried out for 4‐methoxy‐2‐methyl benzoic acid (4M2MBA) by using Fourier transform infrared (FT‐IR) (solid, gas phase) and FT‐Raman spectroscopy in the range of 400–4000 and 10–3500 cm−1 respectively. The effects of molecular association through O H···O hydrogen bonding have been described by the single dimer structure. The theoretical computational density functional theory (DFT) and Hatree‐Fock (HF) method were performed at 6–311++G(d,p) levels to derive the equilibrium geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities. The scaled theoretical wavenumbers were also shown to be in good agreement with experimental data. The first‐order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2MBA are calculated using the B3LYP/cc‐pvdz basis set, based on the finite‐field approach. A detailed interpretation of the infrared and Raman spectra of 4M2MBA is reported. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule were also constructed and compared with the experimental one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
As an important chemosensing material involving hexafluoroisopropanol (HFIP) for detecting nerve agents, para‐HFIP aniline (p‐HFIPA) has been firstly synthesized through a new reaction approach and then characterized by nuclear magnetic resonance and mass spectrometry experiments. Fourier transform infrared absorption spectroscopy (FT‐IR) and FT‐Raman spectra of p‐HFIPA have been obtained in the regions of 4000–500 and 4000–200 cm−1, respectively. Detailed identifications of its fundamental vibrational bands have been given for the first time. Moreover, p‐HFIPA has been optimized and vibrational wavenumber analysis can be subsequently performed via density functional theory (DFT) approach in order to assist these identifications in the experimental FT‐IR and FT‐Raman spectra. The present experimental FT‐IR and FT‐Raman spectra of p‐HFIPA are in good agreement with theoretical FT‐IR and FT‐Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The Fourier‐transform infrared spectrum of 3‐hydroxy‐2‐naphthoic acid hydrazide (3H2NAH) was recorded in the region 4000–400 cm−1. The Fourier‐transform Raman spectrum of 3H2NAH was also recorded in the region 3500–10 cm−1. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of 3H2NAH were carried out by density functional theory (DFT/B3LYP) method with 6‐31G(d,p) as basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The values of the electric dipole moment (µ) and the first‐order hyperpolarizability (β) of the investigated molecule were computed using ab initio quantum mechanical calculations. The UV spectrum was measured in ethanol solution. The calculation results also show that the 3H2NAH molecule might have microscopic nonlinear optical (NLO) behavior with non‐zero values. A detailed interpretation of the infrared and Raman spectra of 3H2NAH is also reported based on total energy distribution (TED). The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT‐IR and FT‐Raman spectra for the title molecule have also been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The optimized geometry and structural features of the most prospective electro‐optic crystal 4‐(N,N‐dimethylamino)‐N‐methyl‐4′‐toluene sulfonate (DAST), and the vibrational spectral investigations have been comprehensively described with the near infrared Fourier transform (NIR FT) Raman and Fourier transform infrared (FT‐IR) spectra supported by the density functional theoretical (DFT) computations to elucidate the contribution of vibrational modes to the linear electro‐optic (LEO) effect. Mulliken population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer (ICT), intramolecular hydrogen bonding and hyperconjugative interactions on the geometries. The influence of CT interaction between the phenyl ring and the dimethylamino group of the nonlinear optical (NLO) chromophore on the endocyclic and exocyclic angles, and the electronic effects such as hyperconjugation and back‐donation on the methyl hydrogen atoms have been examined. The concurrent intense activation of Raman and IR activities of the effective conjugation vibrational coordinate, which significantly contributes to the LEO effect resulting from the strong electron–phonon (e/ph) coupling, has been analyzed in detail. The effects of frontier orbitals, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), transition of electron density (ED) transfer and the influence of planarity in the stilbazolium ring on the first hyperpolarizability are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The Fourier transform infrared (FT‐IR) and FT‐Raman spectra of sulfur trioxide‐pyridine complex were recorded and analyzed. The potential‐dependent surface‐enhanced Raman scattering (SERS) was recorded from an electrochemically roughened silver electrode. The vibrational wave numbers of the compound were computed using the Hartree–Fock/6‐31G* basis and compared with the experimental values. The presence of strong pyridine ring vibrations in the SERS spectrum reveals the interaction between the pyridine ring and the silver surface. The molecule is adsorbed on the silver surface with the pyridine ring in a tilted orientation. The direction of charge‐transfer contribution to the SERS is discussed from the frontier orbital theory. The value of the calculated first hyperpolarizability is comparable to those reported for similar structures, which makes this molecule an attractive object for future studies of nonlinear optics. The optimized geometrical parameters of the title compound are in agreement with similar reported structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Vibrational spectral analysis of the hydrogen‐bonded nonlinear optical (NLO) material p‐bromo acetanilide (PBA) was carried out using NIR‐FT‐Raman and FT‐IR spectroscopy. Ab initio molecular orbital computations were performed at HF/6‐31G (d) level to derive equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The lowering of the imino stretching wavenumbers suggests the existence of strong intermolecular N H···O hydrogen bonding, which was substantiated by the natural bond orbital (NBO) analysis. The vibrational spectra confirm that the charge‐transfer interaction between the  NHCOCH3 group and—Br through phenyl ring is responsible for simultaneous strong IR and Raman activation of the ring mode 8a. Vibrational analysis indicates that the lowering of stretching wavenumbers of methyl group due to electronic effects simultaneously caused by induction and hyperconjugation is due to the presence of the oxygen atom. The presence of blue‐shifting H‐bonds of CH stretching wavenumbers, simultaneous activation of carbonyl stretching mode, the strong activity of low‐wavenumber H‐bond stretching vibrations and the role of intramolecular charge transfer in making the molecule NLO active have been analyzed on the basis of the vibrational spectral features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, experimental and theoretical vibrational spectral results of the molecular structures of 6,8‐dichloroflavone (6,8‐dcf) and 6,8‐dibromoflavone (6,8‐dbf) are presented. The FT‐IR and FT‐Raman spectra of the compounds have been recorded together between 4000 and 400 cm−1 and 3500–5 cm−1 regions, respectively. The molecular geometry and vibrational wavenumbers of 6,8‐dcf and 6,8‐dbf in their ground state have been calculated by using DFT/B3LYP functional, with 6‐31 + + G(d,p) basis set used in calculations. All calculations were performed with Gaussian03 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Scale factors have been used in order to compare how the calculated and experimental data are in agreement. Theoretical infrared intensities are also reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The Fourier transform infrared (4000–400 cm−1) and Fourier transform Raman (3500–500 cm−1) spectra of 4‐hydroxy‐3‐(3‐oxo‐1‐phenylbutyl)‐2H‐1‐benzopyran‐2‐one (Warfarin) have been measured and calculated. The structure optimization has been made using density functional theory (DFT) calculations. Complete vibrational assignments of the observed spectra have been compared with theoretical wavenumbers. The wavenumber increasing in the methyl group shows the electronic hyperconjugation effect. The natural bond orbital (NBO) analysis reveals the hyperconjugation interaction and the intramolecular hydrogen bonding. The first‐order hyperpolarizability has been calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Amaranth (E123, Food Red 9, FD & C Red 2) is a sulfonated azo dye used as a color additive in foodstuffs, pharmaceuticals and cosmetics. FT‐IR and FT‐Raman spectra of amaranth were recorded and analyzed. Density functional theory (DFT) calculations were performed to derive the equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The results of the optimized molecular structure gave clear evidence for the intramolecular charge transfer (ICT) and intramolecular hydrogen bonding in the molecule. Azo stretching wavenumbers are lowered owing to conjugation and π‐electron delocalization. Time‐dependent density functional theory (TD‐DFT) calculations of the electronic spectra were performed on the optimized structure and compared with the experimental UV‐visible spectrum. Vibrational spectra, natural bonding orbitals (NBO) analysis and optimized geometry indicate C H·N hydrogen bonding in the molecule. The first hyperpolarizability of the molecule was calculated. The optical nonlinearity of the dye is due to the donation of the electron density from the hydroxyl group of the conjugated system via naphthalene ( 2 ) ring into π*‐orbital of the azo moiety. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
FT‐IR and FT‐Raman spectra of benzoic acid (BA) and 3,5‐dichloro salicylic acid (SA) have been recorded in the regions of 4000–400 and 4000–50 cm−1 respectively. The spectra were interpreted with the aid of normal coordinate analysis following the full structure optimizations and force field calculations based on density functional theory (DFT) using standard B3LYP6‐31G** method and basis set combinations. The DFT force field transformed to natural internal coordinates was corrected by a well‐established set of scale factors that were found to be transferable to the title compounds. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号