首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Fourier‐transform infrared and Fourier‐tranform Raman spectra of phenyl phosphate disodium salt were recorded and analyzed. The surface‐enhanced Raman scattering (SERS) spectrum was recorded in a silver colloid. The vibrational wavenumbers of the compound were computed using the Hartree–Fock/6‐31G* basis and compared with the experimental values. The molecule is adsorbed on the silver surface with the benzene ring in a tilted orientation. The presence of the phenyl ring and the phosphate group vibrations in the SERS spectrum reveal the interactions between the phenyl ring and the phosphate group with the silver surface. The first hyperpolarizability is calculated, and the calculated molecular geometry is compared with those of similar reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The FT‐IR and FT‐Raman spectra of anilinium sulfate were recorded and analyzed. The surface‐enhanced Raman scattering (SERS) was recorded from a silver electrode. The vibrational wavenumbers of the compound have been computed using the Hartree‐Fock/6‐31G* basis and compared with the experimental values. The molecule is adsorbed on the silver surface with the benzene ring in a tilted orientation. The presence of amino and sulfate group vibrations in the SERS spectrum reveal the interaction between amino and sulfate groups with the silver surface. The direction of the charge transfer contribution to SERS has been discussed from the frontier orbital theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
FT‐IR and FT‐Raman spectra of methyl(2‐methyl‐4,6–dinitrophenylsulfanyl)ethanoate (MDIE) were recorded and analyzed. Surface‐enhanced Raman scattering (SERS) spectra were recorded in silver colloid and silver electrode. The vibrational wavenumbers were computed using HF/6‐31G* and B3LYP/6‐31G* basis. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared and Raman spectroscopies as well as in SERS of the studied molecule. The first hyperpolarizability and infrared intensities are reported. The geometrical parameters of the title compound are in agreement with the reported similar derivatives. The presence of new bands at 1045 and 948 cm−1 in the SERS spectrum in silver electrode is related to the change in orientation of the molecule with respect to the metal surface. In silver colloid SERS spectrum, the methyl group attached to the methoxy carbonyl group is close to the metal surface, whereas on silver electrode the methyl group attached to the phenyl ring is close to the metal surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The IR and Raman spectra of ethyl salicylate were recorded and analyzed. The surface enhanced Raman scattering (SERS) spectrum was recorded in a silver colloid. The vibrational wavenumbers of the compound have been computed using the Hartree‐Fock/6‐31G* basis. The direction of charge transfer contribution to SERS has been discussed from the frontier orbital theory. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface and the presence of ring vibrations and out‐of‐plane ring modes in the SERS spectrum suggests a flat orientation of the molecule on the silver surface. The first hyperpolarizability is calculated and the calculated molecular geometry has been compared with the reported similar structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(4‐bromophenylcarbamoyl)phenyl acetate were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighbouring oxygen atom. The simultaneous IR and Raman activations of the CO stretching mode give the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with similar reported structures. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non‐linear optics. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Amaranth (E123, Food Red 9, FD & C Red 2) is a sulfonated azo dye used as a color additive in foodstuffs, pharmaceuticals and cosmetics. FT‐IR and FT‐Raman spectra of amaranth were recorded and analyzed. Density functional theory (DFT) calculations were performed to derive the equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The results of the optimized molecular structure gave clear evidence for the intramolecular charge transfer (ICT) and intramolecular hydrogen bonding in the molecule. Azo stretching wavenumbers are lowered owing to conjugation and π‐electron delocalization. Time‐dependent density functional theory (TD‐DFT) calculations of the electronic spectra were performed on the optimized structure and compared with the experimental UV‐visible spectrum. Vibrational spectra, natural bonding orbitals (NBO) analysis and optimized geometry indicate C H·N hydrogen bonding in the molecule. The first hyperpolarizability of the molecule was calculated. The optical nonlinearity of the dye is due to the donation of the electron density from the hydroxyl group of the conjugated system via naphthalene ( 2 ) ring into π*‐orbital of the azo moiety. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A cultural heritage canvas from the early 19th century, painted by the Vaccaro brothers for the church of Niscemi, province of Caltanissetta, Sicily, was analyzed using Fourier transform (FT)‐Raman, attenuated total reflectance‐FT‐infrared and surface enhanced Raman scattering (SERS) spectroscopy. The painting, still used in religious rites related to the Easter mass (‘la calata da tila’), depicts the scene of the Crucifixion and is executed in a scarce palette, with white, green and blue colors. Analysing vibrational data in conjunction with scanning electron microscopy and solid ‐state 13C‐NMR signals of the linen threads, we were able to offer valuable insight into the painting technique, unknown prior to this study. SERS is usually employed in artwork diagnosis for the identification of organic lakes and dyes. Due to its sensitivity, SERS has been successfully applied for the detection of either organic painting materials (indigo) that are usually not resolved by conventional Raman spectroscopy or of inorganic pigments difficult to observe in the presence of highly fluorescent aged organic supports or binders. To the best of our knowledge, this is also the first report on the SERS investigation of flax used in linen from cultural heritage objects using Ag colloidal nanoparticles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The Fourier transform Raman (FT‐Raman) and Fourier transform infrared (FT‐IR) spectra of 2‐[acetyl(4‐bromophenyl)carbamoyl]‐4‐chlorophenyl acetate were studied. The vibrational wavenumbers were examined theoretically using the Gaussian03 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. The simultaneous Raman and infrared (IR) activations of the CO stretching mode in the carbamoyl moiety show a charge transfer interaction through a π‐conjugated path. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of the CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability and predicted IR intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar structures, which makes this compound an attractive object for future studies of nonlinear optics. Optimized geometrical parameters of the compound are in agreement with similar reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The pH‐dependent surface‐enhanced Raman scattering (SERS) of 1,2,4‐triazole adsorbed on silver electrode and normal Raman (NR) spectra of this compound in the aqueous solutions were investigated. The observed bands in the NR and SERS spectra were assigned with the help of density functional theory calculations for model molecules in the neutral, anionic, and cationic forms and their complexes with silver. The Raman wavenumbers and intensities were computed at the optimized molecular geometry. Vibrational assignments of the SERS and NR spectra are provided by calculated potential energy distributions. The combination of experimental SERS results and density functional theory calculations provide an insight into the molecular structure of adlayers formed by 1,2,4‐triazole on a silver surface at varying pH values and enable the determination of molecular orientation with respect to the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A tubular array of TiO2 nanotubes on Ti matrix was used as a support for Ag or Cu sputter‐deposited layers intended for surface‐enhanced Raman scattering (SERS) investigations. The composite samples of Ag/TiO2–nanotube/Ti and Cu/TiO2–nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) [and scanning Auger microscopy (SAM)] to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured after it had been adsorbed on the TiO2–nanotube/Ti substrates covered with thin Ag or Cu deposit as well as on the bulk electrochemically roughened Ag or Cu reference substrates. It was found that the SERS spectra measured for pyridine adsorbed on the bulk silver substrate were significantly different than the spectra measured on the TiO2–nanotube/Ti substrates covered the Ag layer. The spectra measured for pyridine adsorbed on the Ag/TiO2–nanotube/Ti suggest that on the surface of such a composite substrate there are many Lewis acidic sites. Spectra typical for pyridine adsorbed on acidic sites were observed even after deposition of a relatively thick silver layer (e.g. an Ag layer with an average thickness of 80 nm) on the TiO2–nanotube/Ti support. Our findings suggest that TiO2–nanotube/Ti support is a promising substrate for the preparation of metallic nano‐clusters on a support containing acidic active sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Infrared, Raman and surface‐enhanced Raman scattering (SERS) spectra of 3‐(1‐phenylpropan‐2‐ylamino)propanenitrile (fenproporex) have been recorded. Density functional theory (DFT) with the B3LYP functional was used for optimizations of ground state geometries and simulation of Raman and SERS vibrational spectra of this molecule. Bands of the vibrational spectra were assigned in detail. The comparison of SERS spectra obtained by using colloidal silver and gold nanoparticles with the corresponding Raman spectrum reveals enhancement and shifts in bands, suggesting a possible partial charge‐transfer mechanism in the SERS effect. Information about the orientation of fenproporex on the nanometer‐sized metal structures is also obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The FT‐IR and FT‐Raman spectra of sodium salt of 4‐hydroxy‐3[1‐(4‐nitrophenyl)‐3‐oxobutyl]‐2H‐1‐benzopyran‐2‐one (acenocoumarol sodium salt) in solid phase have been recorded and analyzed. The optimization geometry, intramolecular hydrogen bonding, and harmonic vibrational wavenumbers of acenocoumarol sodium salt have been investigated with the help of B3LYP density functional theory (DFT) methods. The infrared and Raman spectra were predicted theoretically from the calculated intensities. Natural bond orbital (NBO) analysis indicates the presence of C H···O hydrogen bonding in the molecule. The first static hyperpolarizability of the molecule has been computed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
IR, Raman and surface‐enhanced Raman scattering (SERS) spectra of sulfanilic acid sodium salt (SANA) were recorded and analysed. The vibrational wavenumbers were computed by the density functional theory method using the B3LYP/6–31G* basis and found to be in good agreement with the experimental values. The effect of concentration and pH dependence on the SERS intensity of the molecule was also studied. The molecular plane assumes a tilted orientation with respect to the silver surface. The observed changes of the relative intensities of some enhanced bands and the presence of in‐plane and out‐of‐plane modes of the phenyl ring suggest that the molecule assumes a more tilted orientation upon lowering the concentration of the adsorbate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We investigated the interfacial structures of various aromatic (each compound contains one or two phenyls) di‐α‐amino ( L1 – L3 ) and α‐amino‐α‐hydroxyphosphinic ( L4 – L6 ) acids immobilized onto an electrochemically roughened silver electrode surface in an aqueous solution using surface‐enhanced Raman scattering (SERS). These structures were compared to those on a colloidal silver surface to determine the relationship between adsorption strength and geometry. The presence of an enhanced ν19a ring band in the SERS spectra of L6 , L2 , and L3 on the electrode indicated that the benzene rings of those molecules interact with the electrode surface through localized CC bond(s). We observed significant band broadening of the benzene ring modes for all α‐hydroxyphosphinic acids on both substrates, except for L1 deposited onto the electrode surface. This suggests the possibility of direct interaction between the ring and Ag, although the benzene ring–surface π overlap is weaker for the colloidal silver than for the Ag electrode. The downward shift in wavenumber and alternations in the enhancement of a ν12 ring band indicate a general increase of tilt angle on both silver substrates in the order L3 < L4 < L5 < L6 . The altered enhancement of the bands due to the vibrations of the  NH2 and O PO fragments, a finding observed on both silver substrates, strongly suggests that the groups interact with different strength and geometry with these substrates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Silver thiolate is a layered compound with a Raman spectrum that is known to change with time, becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of the parent thiol molecule adsorbed on Ag nanoparticles. On this basis, the Raman scattering characteristics of silver 4‐aminobenzenethiolate (Ag‐4ABT) compounds were investigated to determine whether certain peaks that are identifiable in the SERS spectrum of 4‐aminobenzenethiol (4‐ABT) but absent in its normal Raman spectrum were also apparent in the Ag salt spectrum. For comparative purposes, the Raman scattering characteristics of silver 4‐dimethylaminobenzenethiolate (Ag‐4MABT) were also examined. Raman spectra acquired while spinning the sample were typified by only a1‐type vibrational bands of Ag‐4ABT and Ag‐4MABT, whereas in the static condition, several non‐a1‐type bands were identified. The spectral patterns acquired in the static condition were similar to the intrinsic SERS spectra of 4‐ABT or 4‐dimethylaminobenzenethiol (4‐MABT) adsorbed on pure Ag nanoparticles. Notably, the CH3 group vibrational bands were observable for Ag‐4MABT irrespective of the sample rotation. In addition, no decrease in intensity during irradiation with a visible laser was observed for any of the bands, suggesting that no chemical conversion actually took place in either 4‐ABT or 4‐MABT. The preponderance of evidence led to the conclusion that the non‐a1‐type bands observable in the SERS spectra must be associated with the chemical enhancement mechanism acting on the Ag nanoparticles. The chemical enhancement effect was more profound at 514.5 nm than at 632.8 nm, and was more favorable for 4‐ABT than 4‐MABT at both wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
IR, Raman and surface enhanced Raman scattering (SERS) spectra of 3,5‐dinitrosalicylic acid (DNSA) were recorded and analysed. The vibrational wavenumbers were computed by the ab initio method using RHF/6–21G* basis and they were found to be in good agreement with the experimental values. The effect of the concentration dependence on the SERS intensity of the molecule was studied. The molecular plane assumes a tilted orientation with respect to the silver surface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号