首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we study nanocrystalline zinc oxide thin films produced by oxidation of electrodeposited zinc nanolayers on a monocrystalline p-Si(1 1 1) substrate.The electrolyte used is ZnCl2, an aqueous solution of 4 × 10−2 mol/l concentration. Several deposits were made for various current densities, ranging from 13 mA/cm2 to 44 mA/cm2, flowing through the solution at room temperature. A parametric study enabled us to assess the effect of the current density on nucleation potential and time as well as zinc films structure. The grazing incidence X-ray diffraction (GIXD) revealed that both Zn and ZnO films are polycrystalline and nanometric. After 1-h oxidation of zinc films at 450 °C in the open air, the structural analyses showed that the obtained ZnO films remained polycrystalline with an average crystal size of about 47 nm and with (1 0 0), (0 0 2) and (1 0 1) as preferential crystallographic orientations.  相似文献   

2.
Solution Growth Technique (SGT) has been used for deposition of Zn1−xCdS nanocrystalline thin films. Various parameters such as solution pH (10.4), deposition time, concentration of ions, composition and deposition and annealing temperatures have been optimized for the development of device grade thin film. In order to achieve uniformity and adhesiveness of thin film on glass substrate, 5 ml triethanolamine (TEA) have been added in deposition solution. The as-deposited films have been annealed in Rapid Thermal Annealing (RTA) system at various temperature ranges from 100 to 500 °C in air. The changes in structural formation and optical transport phenomena have been studied with annealing temperatures and composition value (x). As-deposited films have two phases of ZnS and CdS, which were confirmed by X-ray diffraction studies; further the X-ray analysis of annealed (380 °C) films indicates that the films have nanocrystalline size (150 nm) and crystal structure depends on the films stoichiometry and annealing temperatures. The Zn0.4CdS films annealed at 380 °C in air for 5 min have hexagonal structure where as films annealed at 500 °C have represented the oxide phase with hexagonal structure. Optical properties of the films were studied in the wavelength range 350-1000 nm. The optical band gap (Eg=2.94-2.30 eV) decreases with the composition (x) value. The effect of air rapid annealing on the photoresponse has also been observed on Zn1−xCdS nanocrystal thin films. The Zn1−xCdS thin film has higher photosensitivity at higher annealing temperatures (380-500 °C), and films also have mixed Zn1−xCdS/Zn1−xCdSO phase with larger grain size than the as-deposited and films annealed up to 380 °C. The present results are well agreed with the results of other studies.  相似文献   

3.
In the present work we studied the influence of the dopant elements and concentration on the microstructural and electrochemical properties of ZnO thin films deposited by spray pyrolysis. Transparent conductive thin films of zinc oxide (ZnO) were prepared by the spray pyrolysis process using an aqueous solution of zinc acetate dehydrate [Zn(CH3COO)2·2H2O] on soda glass substrate heated at 400 ± 5 °C. AlCl3, MgCl2 and NiCl2 were used as dopant. The effect of doping percentage (2–4%) has been investigated. Afterwards the samples were thermally annealed in an ambient air during one hour at 500 °C. X-ray diffraction showed that films have a wurtzite structure with a preferential orientation along the (0 0 2) direction for doped ZnO. The lattice parameters a and c are estimated to be 3.24 and 5.20 ?, respectively. Transmission allowed to estimate the band gaps of ZnO layers. The electrochemical studies revealed that the corrosion resistance of the films depended on the concentration of dopants.  相似文献   

4.
Room temperature soft chemical deposition route has been utilized to grow thin films of ZnO on glass substrate. Annealing at 673 K removed zinc hydroxide phase and nanofibrous ZnO films with wurtzite crystal structure were obtained. Decrease in the room temperature electrical resistivity from 107 to 104 Ω cm was observed after annealing. The nanofibrous ZnO thin films were sensitive to the explosive liquefied petroleum gas (LPG) and the maximum response of 17% at 698 K under the exposure of 6500 ppm of LPG was obtained.  相似文献   

5.
Two kinds of different aligned zinc oxide (ZnO) crystal microtube arrays were prepared on silicon (1 0 0) substrates by using of a simple thermal chemical reaction vapor transport deposition method. The synthesizing processes were done by using of heating the mixture of zinc oxide and graphite powders at 1150 °C in a quartz tube with one side opened to the air. The O2 gas (99.9%) and air had been introduced as the assistant gases, respectively. Both the flow rates were 100 ml/min. And the temperature of the Si (1 0 0) substrate region was about 400 °C. There is no other metal catalyst on the Si wafers in the process. After growing for 30 min, one kind of synthesized sample is trumpet-shaped hexagonal microtube arrays assisted with O2 gas and another produced sample is the uniform hexagonal microtubes only assisted with air. As the increasing of preparing time, their maximal lengths can range from several 10 μm to mm scale. The microstructure, room temperature photoluminescence properties and growth mechanism of both aligned microtube arrays were investigated and discussed.  相似文献   

6.
The effect of deposition temperature, relative humidity of carrier gas and UV-assistance on the growth of Erbium-doped aluminium oxide films has been studied. The films were prepared from aluminium acetylacetonate (Al(C5H7O2)3) and erbium (III) Tris(2,2,6,6-tetramethyl-3,5-heptanedionate) (Er(TMHD)3) by UV and aerosol-assisted metal-organic chemical vapour deposition, using air with controlled humidity as carrier gas. Amorphous transparent films were deposited between 350 and 460 °C. It was observed that UV assistance allows a large decrease down to 5 kJ/mol of the activation energy of the deposition reaction for deposition temperatures lower than 420 °C. More over, depositing under high air humidity induced higher deposition rate, lower level of organic contamination and higher film density. Under these conditions Er-doped aluminium oxide films with a refractive index value of 1.71 were obtained at 460 °C.  相似文献   

7.
The synthesis by pulsed laser deposition technique of zinc oxide thin films suitable for gas sensing applications is herein reported. The ZnO targets were irradiated by an UV KrF* (λ = 248 nm, τFWHM ∼7 ns) excimer laser source, operated at 2.8 J/cm2 incident fluence value, whilst the substrates consisted of SiO2(0 0 1) wafers heated at 150 °C during the thin films growth process. The experiments were performed in an oxygen dynamic pressure of 10 Pa. Structural and optical properties of the thin films were investigated. The obtained results have demonstrated that the films are c-axis oriented. Their average transmission in the visible-infrared spectral region was found to be about 85%. The equivalent refractive indexes and extinction coefficients were very close to those of the tabulated reference values. Doping with 0.5% Au and coating with 100 pulses of Au clusters caused but a very slight decrease (with a few percent) of both transmission and refractive index values. The coatings with the most appropriate optical properties as waveguides have been selected and their behavior was tested for butane sensing.  相似文献   

8.
A simple and inexpensive spray pyrolysis technique (SPT) was employed for the synthesis of nanocrystalline zinc oxide (ZnO) thin films onto soda lime glass and tin doped indium oxide (ITO) coated glass substrates at different substrate temperatures ranging from 300 °C to 500 °C. The synthesized films were polycrystalline, with a (0 0 2) preferential growth along c-axis. SEM micrographs revealed the uniform distribution of spherical grains of about 80-90 nm size. The films were transparent with average visible transmittance of 85% having band gap energy 3.25 eV. All the samples exhibit room temperature photoluminescence (PL). A strong ultraviolet (UV) emission at 398 nm with weak green emission centered at 520 nm confirmed the less defect density in the samples. Moreover, the samples are photoelectrochemically active and exhibit the highest photocurrent of 60 μA, a photovoltage of 280 mV and 0.23 fill factor (FF) for the Zn450 films in 0.5 M Na2SO4 electrolyte, when illuminated under UV light.  相似文献   

9.
Al-doped zinc oxide (AZO) thin films have been prepared by spray pyrolysis (SP) technique of zinc acetate and aluminium nitrate, and the effect of thickness on structural and optical properties has been investigated. The structural and optical characteristics of the AZO films were examined by X-ray diffraction (XRD) and double-beam spectrophotometry. These films, deposited on glass substrates at an optimal substrate temperature (TS = 450 °C), have a polycrystalline texture with a hexagonal structure. Transmission measurements showed that for visible wavelengths, the AZO films have an average transmission of over 90%. The optical parameters have been calculated. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for the sprayed films is also reported. Optical band gap of AZO is 3.30 and 3.55 eV, respectively, depending on the film thicknesses.  相似文献   

10.
Compact and homogeneous c-axis preferred orientation of zinc oxide (ZnO) films on indium tin oxide (ITO) coated glass have been prepared electrochemically at −1.2 V vs. Ag|AgCl in a weak acidic condition from 0.06 M Zn(NO3)2 with 3 mM lactic acid (LA) added. LA was found having strong influence on the electrodeposition of c-axis preferred orientation of zinc oxide films. Other experimental variables such as deposition temperature, potential, and precursor concentration were also conducted in this article. Among these variables, it was found that precursor concentration of zinc nitrate influenced significantly on growth direction and crystal diameter of zinc oxide. Cyclic voltammetry was used to observe the electrochemistry of the deposition. Crystallinities of the films were examined by X-ray diffractometer. The morphologies of zinc oxide films were observed with a field emitting scanning electron microscope. Optical characteristics of zinc oxide layers were measured with UV-vis spectrophotometer. The band gap of the deposited zinc oxide thin films was evaluated from the Tauc relationship of (αhν)2 vs. , which was found to be 3.31 eV.  相似文献   

11.
Aluminum doped zinc oxide (AZO) films were substitutes of the SnO2:F films on soda lime glass substrate in the amorphous thin-film solar cells due to good properties and low cost. In order to improve properties of AZO films, the TiO2 buffer layer had been introduced. AZO films with and without TiO2 buffer layer were deposited on soda lime glass substrates by r.f. magnetron sputtering. Subsequently, one group samples were annealed in vacuum (0.1 Pa) at 500 °C for 120 s using the RTA system, and the influence of TiO2 thickness on the properties of AZO films had been discussed. The XRD measurement results showed that all the films had a preferentially oriented (0 0 2) peak, and the intensity of (0 0 2) peak had been enhanced for the AZO films with TiO2 buffer layer. The resistivity of TiO2 (3.0 nm)/AZO double-layer film is 4.76×10−4 Ω cm with the maximum figure merit of 1.92×10−2 Ω−1, and the resistivity has a remarkable 28.7% decrease comparing with that of the single AZO film. The carrier scattering mechanism of TiO2 (3.0 nm)/AZO double-layer film had been described by Hall measurement in different temperatures. The average transmittance of all the films exceeded 92% in the visible spectrum. Another group samples were heat treated in the quartz tube in air atmosphere, and the effect of TiO2 thickness on thermal stability of AZO films had been discussed.  相似文献   

12.
Present paper reports the preparation and characterization of nanorods and mixed shaped (nanospheres/nanocubes) copper ferrite for liquefied petroleum gas (LPG) sensing at room temperature. The structural, surface morphological, optical, electrical as well as LPG sensing properties of the copper ferrite were investigated. Single phase spinel structure of the CuFe2O4 was confirmed by XRD data. The minimum crystallite size of copper ferrite was found 25 nm. The stoichiometry was confirmed by elemental analysis and it revealed the presence of oxygen, iron and copper elements with 21.91, 12.39 and 65.70 atomic weight percentages in copper ferrite nanorods. The band gap of copper ferrite was 3.09 and 2.81 eV, respectively for nanospheres/nanocubes and nanorods. The sensing films were made by using screen printing technology and investigated with the exposure of LPG. Our results show that the mixed shaped CuFe2O4 had an improved sensing performance over that of the CuFe2O4 nanorods, of which a possible sensing mechanism related to a surface reaction process was discussed. Sensor based on mixed shaped copper ferrite is 92% reproducible after one month. The role of PEG in the synthesis for obtaining nanospheres/nanocubes has also been demonstrated.  相似文献   

13.
Highly transparent conductive Al2O3 doped zinc oxide (AZO) thin films have been deposited on the glass substrate by pulsed laser deposition technique. The effects of substrate temperature and post-deposition annealing treatment on structural, electrical and optical properties of AZO thin films were investigated. The experimental results show that the electrical resistivity of films deposited at 240 °C is 6.1 × 10−4 Ω cm, which can be further reduced to as low as 4.7 × 10−4 Ω cm by post-deposition annealing at 400 °C for 2 h in argon. The average transmission of AZO films in the visible range is 90%. The optical direct band gap of films was dependent on the substrate temperature and the annealing treatment in argon. The optical direct band gap value of AZO films increased with increasing annealing temperature.  相似文献   

14.
Atomic layer deposition (ALD) of zinc oxide (ZnO) films on (0 0 0 1) sapphire substrates was conducted at low temperatures by using diethyl-zinc (DEZn) and nitrous oxide (N2O) as precursors. It was found that a monolayer-by-monolayer growth regime occurred at 300 °C in a range of DEZn flow rates from 5.7 to 8.7 μmol/min. Furthermore, the temperature self-limiting process window for the ALD-grown ZnO films was also observed ranging from 290 to 310 °C. A deposition mechanism is proposed to explain how saturated growth of ZnO is achieved by using DEZn and N2O. Transmission spectroscopic studies of the ZnO films prepared in the self-limiting regime show that the transmittances of ZnO films are as high as 80% in visible and near infrared spectra. Experimental results indicate that ZnO films with high optical quality can be achieved by ALD at low temperatures using DEZn and N2O precursors.  相似文献   

15.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

16.
FePt–SiNx–C films with high coercivity, (001) texture and small grain size were obtained by co-sputtering FePt, Si3N4 and C on TiN/CrRu/glass substrate at 380 °C. Without C doping, FePt–SiNx films with good perpendicular anisotropy and a single layer structure were obtained. However, the grain size was still too large and the grain isolation was poor. When C was doped into the FePt–SiNx films, the out-of-plane coercivity increased due to the decrease of the exchange coupling. In addition, the grain size of the FePt films decreased, and well-separated FePt grains with uniform size were formed. The microstructure of [FePt–SiNx 40 vol%]−20 vol% C films changed from a single layer structure to a multiple layer structure when the FePt thickness was increased from 4 to 10 nm. By optimizing the sputtering process, the [FePt (4 nm)–SiNx 40 vol%]−20 vol% C (001) film with coercivity higher than 21.5 kOe, a single layer structure, and small average FePt grain size of 5.6 nm was obtained, which makes it suitable for ultrahigh density perpendicular recording.  相似文献   

17.
An alternative all-fiber sensor for simultaneous strain and temperature measurement based on a photonic crystal fiber (PCF) spliced between single-mode fibers cascaded with a long period grating (LPG) is proposed. By collapsing the air holes at two splicing regions along the PCF, a simple but effective modal-interference (MI) is occurred between the core and cladding modes of the PCF. Due to the different responses on the changes of strain and temperature on the MI and the cascaded LPG, the strain and temperature can be measured simultaneously. Experimental results show that the sensing resolution of 9.1 με in strain measurement is experimentally achieved over a range of 2640 με, while the temperature sensing resolution is 0.27 °C within a range of 30-100 °C.  相似文献   

18.
Nanocrystalline nickel-zinc ferrite thin films with the general formula Ni1−xZnxFe2O4, where x=0.0, 0.2, 0.4 and 0.6 were fabricated via a chemical route known as the citrate precursor route. These films were spin-deposited on indium-tin oxide coated glass, fused quartz and amorphous Si-wafer substrates, and annealed at various temperatures up to 650 °C. The films annealed below 400 °C were found to be X-ray amorphous, while the films annealed at and above 400 °C were polycrystalline exhibiting a single-phase spinel structure. The average grain size of the films evaluated by transmission electron microscopy, is found to be in the range 4-8.5 nm. The room temperature DC resistivity of the films is in the range 103-107 Ω m. Dielectric constant and dielectric loss were measured in the frequency range 100 Hz-1 MHz. Dielectric constant of the films is found to lie between 25 and 44, while the loss factor is if the order of 10−2. The higher values of the dielectric constant for films having higher zinc concentration are attributable to the enhanced hopping between Fe2+ and Fe3+ ions in these samples. The M-H hysteresis measurement of the nickel ferrite thin films annealed at 650 °C showed narrow hysteresis loop—a characteristic of soft ferromagnetic material.  相似文献   

19.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

20.
Antimony-doped tin oxide (SnO2:Sb) single crystalline films have been prepared on α-Al2O3 (0 0 0 1) substrates by metal organic chemical vapor deposition (MOCVD). The antimony doping was varied from 2% to 7% (atomic ratio). Post-deposition annealing of the SnO2:Sb films was carried out at 700-1100 °C for 30 min in atmosphere ambient. The effect of annealing on the structural, electrical and optical properties of the films was investigated in detail. All the SnO2:Sb films had good thermal stability under 900 °C, and the 5% Sb-doped SnO2 film exhibited the best opto-electrical properties. Annealed above 900 °C, the 7% Sb-doped SnO2 film still kept high thermal stability and showed good electrical and optical properties even at 1100 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号