首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
We present an all-fiber sensor for simultaneous measurement of temperature and strain. The sensing head is formed by introducing a fiber Bragg grating into a high-birefringence fiber loop mirror that acts as a Mach-Zehnder interferometer for temperature and strain discrimination. A sensing resolution of ±1 °C in temperature and ±21 με in strain has been experimentally achieved over a temperature range of 60 °C and strain range of 600 με.  相似文献   

2.
3.
A novel temperature and strain sensor based on a fiber loop mirror (FLM) consisting of high-birefringence polarization-maintaining fibers is proposed. The output spectrum was theoretically deduced based on Jones matrix. Two equal-length high-birefringence fibers (HBFs) with different birefringence indices were inserted into the FLM. The temperature and strain sensing system was built. The sensitivity coefficients of temperature and strain were calibrated respectively. The double parameters measurement of temperature and strain was realized. High resolution of 2.38 μ? has been achieved for strain sensing. Meanwhile, the temperature resolution is 0.016 °C.  相似文献   

4.
A Sagnac interferometer with a long-period fiber grating (LPG) inscribed in the polarization-maintaining fiber (PMF) is proposed and experimentally demonstrated for simultaneous measurement of strain and temperature. Due to the different responses of the LPG and the Sagnac interferometer to strain and temperature, simultaneous measurement can be achieved by monitoring the wavelength shifts and the intensity changes of a resonance dip of the sensor setup. The experimental results show that the achieved sensitivities to strain and temperature are 6.4 × 10− 3 dB/με and 0.65 nm/°C, respectively.  相似文献   

5.
A sensor head consisting of a photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) and a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of curvature and temperature. The MZI fabricated by splicing a short length of PCF between two single-mode fibers with the air-hole structure that completely collapsed near the splicing points, is sensitive to fiber bending and surrounding temperature, while the FBG is only sensitive to the later. Simultaneous measurement of curvature and temperature is therefore obtained. Sensitivities of 4.06 nm/m− 1 and 6.30 pm/°C are achieved experimentally for curvature and temperature, respectively. And the corresponding resolutions are 5.2 × 10− 4 m− 1 and 1.25 °C for curvature and temperature, respectively, based on the wavelength measurement resolution of 10 pm.  相似文献   

6.
In this work, we describe a fiber Bragg grating (FBG) sensing system using two wavelength-matched FBG sensors for static and dynamic strain measurement. A cascaded long-period fiber grating (CLPG)-based demodulation technique has been used to interrogate the two wavelength-matched FBG sensors. Experimental results of static strain measurement show that the proposed system has a strain resolution of 1 με. This system has also been used for dynamic strain measurement. An eddy current displacement meter-based system has been used as a comparison measurement. Experimental results of dynamic strain measurement have proved that the FBG sensing system has a good performance in the measurement of dynamic strain. The results of static and dynamic strain measurement indicate that the sensing system using two wavelength-matched FBG sensors is superior to the single FBG sensor system.  相似文献   

7.
Temperature effects on the various cladding modes of a long-period grating (LPG) fabricated in B-Ge co-doped fibre have been investigated to create a high sensitivity measurement device. The temperature sensitivities of the attenuation bands of the LPG over the wavelength region 1.2-2.2 μm, for a grating with a 330 μm period, were obtained by monitoring the wavelength shift of each attenuation band, with a temperature increment of 20 °C, over the range from 23 °C to 140 °C. The attenuation band appearing over the 1.8-2.0 μm wavelength range has shown a nearly five times higher temperature sensitivity than that of lower order modes, and thus it shows significant promise for fibre optic temperature sensor applications.  相似文献   

8.
A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.  相似文献   

9.
A temperature-independent highly-sensitive curvature sensor by using a tapered-photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered-PCF between two standard single mode fibers (SMFs) with the air holes of the PCF in the fusion splicing region being fully collapsed. The tapering of PCF is found to enhance the sensitivity significantly. Large curvature sensitivities of 2.81 dB/m−1 and 8.35 dB/m−1 are achieved in the measurement ranges of 0.36-0.87 m−1 and 0.87-1.34 m−1, respectively, with the resolution of 0.0012 m−1 being guaranteed. The proposed sensor also shows negligible temperature sensitivity less than 0.006 dB/°C.  相似文献   

10.
The performance of Brillouin optical time domain reflectometry (BOTDR) affected by different pump power and direction of erbium doped fiber amplifier (EDFA) is experimentally demonstrated. A temperature error of 0.5 °C and spatial resolution of 10 m is obtained over 80 km sensing fiber with EDFA. The temperature resolution and dynamic range of BOTDR with backward pumped EDFA is better than forward pumped EDFA. Within the range of pump power, the resolution of BOTDR can be improved by increasing pump power.  相似文献   

11.
An approach to optimize the design of the long-period grating pair as a temperature sensor device is presented, implemented by using a long-period grating (LPG) pair with a small separation (of around 2 mm) and scaling down their physical length by a factor greater than 2. The technique allows the interferometer formed not only to measure temperature variations over distances as small as the overall length of the grating pair (18 mm) but also to reduce the cladding losses between the LPGs forming the pair. This approach enhances the sharpness of the interference fringes (IFs) and the pits (Pts) in the transmission spectrum and, as a result, a high resolution sensor is obtained. The LPG pair is fabricated in the appropriate photosensitive single mode/core fibres, without being restricted to the use of dual core or other special fibres, thus exploiting the sensitivities of various fibres and reducing the overall system cost. In this work, the effectiveness of this technique is demonstrated by fabricating a small-scale LPG pair in a boron-germanium co-doped single mode fibre, with particular attention being paid to the higher order cladding modes. The sensitivity of the device thus created is 0.31 nm/°C with a root-mean-square (rms) deviation of 0.28 nm in the wavelength measurement, which corresponds to a temperature variation of approximately 0.9 °C. This was achieved while using a relatively low-resolution (0.6 nm) Optical Spectrum Analyzer to detect the wavelength changes of the device and was further improved to 0.7 °C when using an OSA with a resolution of 0.1 nm.  相似文献   

12.
Hu DJ  Lim JL  Jiang M  Wang Y  Luan F  Shum PP  Wei H  Tong W 《Optics letters》2012,37(12):2283-2285
We propose and demonstrate a novel and simple dual-parameter measurement scheme based on a cascaded optical fiber device of long-period grating (LPG) and photonic crystal fiber (PCF) modal interferometer. The temperature and refractive index (RI) can be measured simultaneously by monitoring the spectral characteristics of the device. The implemented sensor shows distinctive spectral sensitivities of -30.82 nm/RIU (refractive index unit) and 47.4 pm/°C by the LPG, and 171.96 nm/RIU and 10.4 pm/°C by the PCF modal interferometer. The simultaneous measurement of the temperature and external RI is experimentally demonstrated by the sensor. The temperature shift and RI shift calculated by the sensor matrix agree well with the actual temperature and RI change in the experiment.  相似文献   

13.
In this letter, we propose a high resolution temperature insensitive interrogation technique for FBG sensors where one FBG acts as an edge filter to interrogate a separate FBG sensor. A high resolution of better than 5 με in strain measurement range from 0 to 1100 με and the best resolution of better than 1 με were verified by experiments. An error of only ±2.2 με is achieved over a temperature range from 15 to 50 °C, indicating that this strain interrogation technique is temperature insensitive. Using an altered system configuration, the temperature was also measured simultaneously with a resolution better than 0.2 °C.  相似文献   

14.
We present a new design for simultaneous strain and temperature measurement using a high-birefringence fiber loop mirror (HiBi-FLM) concatenated with a temperature-insensitive long-period grating (LPG) written in a photonic crystal fiber (PCF). The FLM acts as a sensor head, while the LPG in PCF serves as a filter to convert wavelength variation to optical power change. By measuring the wavelength variation and the power difference of two near peaks in the spectral response of this configuration, simultaneous strain and temperature measurement is obtained.  相似文献   

15.
An optical fiber curvature sensor with low-birefringence photonic crystal fiber (PCF) based Sagnac loop is demonstrated experimentally. The low-birefringence PCF of about 40 cm long is inserted into Sagnac loop, and a section of it about 155 mm is used as the sensing element. The Sagnac output spectra under different curvatures are measured and analyzed. The results show that the wavelength shift of the transmission dip has a linear relationship with the curvature. The sensitivity of the curvature measurement of − 0.337 nm is achieved in the range of 0-9.92 m− 1. And the temperature effect of the proposed sensor is also analyzed.  相似文献   

16.
Choi HY  Park KS  Lee BH 《Optics letters》2008,33(8):812-814
We present an all-fiber interferometer fabricated with a single piece of an endless single-mode photonic crystal fiber (PCF) by an electric arc discharge. By forming a long period grating (LPG) at a point and collapsing the air holes at another point along the PCF, the simple but effective interferometer could be implemented. The LPG made a strong wavelength selective mode coupling between the core and cladding modes in the interesting wavelength range, while the air-hole collapse induced wavelength independent mode couplings. By cascading them, we could implement the all-fiber interferometer. As a potential application of the proposed all PCF interferometer, strain sensing is experimentally demonstrated.  相似文献   

17.
Zou L  Bao X  Afshar V S  Chen L 《Optics letters》2004,29(13):1485-1487
The dependence of the Brillouin frequency shift on strain in a photonic crystal fiber (PCF) was measured at a wavelength of 1320 nm for the first time to the authors' knowledge. Together with measurements of the dependence of the Brillouin frequency shift on temperature in the PCF, we demonstrate the feasibility of the highly precise simultaneous measurement of temperature and strain by use of the PCF in a distributed Brillouin sensing system with a spatial resolution of 15 cm.  相似文献   

18.
Temperature dependence of an edge filter based on singlemode-multimode-singlemode (SMS) fiber structure is investigated numerically and experimentally. The experimental results and numerical results are in good agreement within an operational temperature range from 10 °C to 40 °C. It is found that the thermo-optic coefficient (TOC) has a more significant effect on the temperature dependence of an SMS edge filter compared to the thermal expansion coefficient (TEC). In the ratiometric wavelength measurement using two SMS edge filters, a small temperature variation can induce the ratio variation and in turn the wavelength measurement error. It is found the SMS edge filter’s response to both wavelength and temperature is linear. It is proposed that self-monitoring of temperature can be carried out using an updated ratiometric scheme. Self-monitoring of the temperature reduces temperature induced wavelength error to ±0.7 pm at 1545 nm, regardless of the ambient temperature variation.  相似文献   

19.
A fiber laser sensor, which consists of two coupled cavities based on three fiber Bragg gratings (two of them acting as sensing elements) and is interrogated via the longitudinal mode beating frequency, is presented. The two resonant cavities have lengths of 4250 m and 4297 m, respectively. Their beating frequency is of the order of 24 kHz, and its shift as a function of the variation of the period of one (or both) of the sensing gratings, induced by strain or temperature changes, can be measured by a radio-frequency analyzer. The system is suitable for long-distance sensing with high spatial resolution and high sensitivity.  相似文献   

20.
Supercontinuum generation by dual-wavelength nanosecond pumping in the vicinity of both zero-dispersion wavelengths of a photonic crystal fiber (PCF) is experimentally demonstrated. It is shown in particular that two pumps at 1535 nm and 767 nm simultaneously pumping near the two zero-dispersion wavelengths of a specially designed PCF yields a combined visible and infrared supercontinuum spectrum spanning from 0.55 μm to 1.9 μm. We discuss the generation mechanisms underlying the continuum formation in terms of modulation instability and cascaded Raman generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号