首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《化学:亚洲杂志》2018,13(18):2677-2684
A new porphyrin‐based compound, [Zn3(C40H24N8)(C20H8N2O4)2(DEF)2](DEF)3 ( 1 ; DEF=N,N‐diethylformamide), has been synthesized by employing 5,10,15,20‐tetrakis(4‐pyridyl)porphyrin, 1,2‐diamino‐3,6‐bis(4‐carboxyphenyl)benzene, and Zn2+ salt at 100 °C under solvothermal conditions. The structure, as determined by single‐crystal XRD studies, is three‐dimensional with threefold interpenetration. The usefulness of free −NH2 groups in the ligand was exploited for anchoring silver nanoparticles through a simple solution‐based route. The silver‐loaded sample, Ag@ 1 , was characterized by powder XRD, energy‐dispersive X‐ray spectroscopy, high‐resolution TEM, SEM, X‐ray photoelectron spectroscopy, and inductively coupled plasma MS analysis, which clearly indicated that silver nanoparticles with a size of 3.83 nm were uniformly distributed within the metal–organic framework (MOF). The Ag@ 1 sample was evaluated for possible catalytic activity for the carboxylation of a terminal alkyne by employing CO2 under atmospheric pressure; this gave excellent results. The Ag@ 1 catalyst was found to be robust, active, and recyclable. The present studies suggest that porphyrin MOFs not only exhibit interesting structures, but also show good heterogeneous catalytic activity towards the fixation of CO2.  相似文献   

2.
A composite material has been successfully synthesized using an amino‐containing metal–organic framework (NH2‐MOF) and phosphotungstic acid (PTA). This composite was characterized using X‐ray diffraction, high‐resolution transmission electron microscopy, nitrogen adsorption–desorption measurements, Fourier transform infrared spectroscopy and X‐ray fluorescence. Characterization results confirmed the immobilization and good distribution of PTA in the NH2‐MOF. The PTA/NH2‐MOF was subsequently applied in the oxidative desulfurization of dibenzothiophene (DBT) with H2O2 as the oxidant in n‐octane under atmospheric conditions. Under optimal reaction conditions, the oxidative desulfurization conversion of DBT reached 100%, and there was no significant decrease of the catalytic activity after four recycles. Kinetic experiments were also performed for the reaction at various temperatures, which indicated that oxidative reaction rates followed pseudo first‐order kinetics, and the apparent activation energy for the desulfurization reaction was 34.1 kJ mol?1. The results indicated that this material exhibited excellent catalytic performance for oxidative desulfurization of DBT. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Crystal engineering of the nbo metal–organic framework (MOF) platform MOF‐505 with a custom‐designed azamacrocycle ligand (1,4,7,10‐tetrazazcyclododecane‐N,N′,N′′,N′′′‐tetra‐p‐methylbenzoic acid) leads to a high density of well‐oriented Lewis active sites within the cuboctahedral cage in MMCF‐2, [Cu2(Cu‐tactmb)(H2O)3(NO3)2]. This MOF demonstrates high catalytic activity for the chemical fixation of CO2 into cyclic carbonates at room temperature under 1 atm pressure.  相似文献   

4.
A novel heterogeneous nanocatalyst was established by supporting molybdenum (VI) on Zr6 nodes in the structure of the well‐known UiO‐66 metal–organic framework (MOF). The structure of the UiO‐66 before and after Mo (VI) immobilization was confirmed with XRD, DR‐FTIR and UV–vis spectroscopy, and the presence and amount of Mo (VI) was identified by X‐ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy. TEM imaging confirmed the absence of Mo clusters on the MOF surface, while SEM confirmed that the appearance of the MOF has not changed upon immobilizing the Mo (VI) catalyst. BET adsorption measurements were used to confirm the porosity of the catalyst. The catalytic activity of this heterogeneous catalyst was investigated in oxidation of sulfides with H2O2 in acetonitrile and oxidative desulfurization of dibenzothiophene. Easy work up, convenient and steady reuse and high activity and selectivity are prominent properties of this new hybrid material.  相似文献   

5.
A porous rtl metal–organic framework (MOF) [Mn5L(H2O)6?(DMA)2]?5DMA?4C2H5OH ( 1? Mn) (H10L=5,10,15,20‐tetra(4‐(3,5‐dicarboxylphenoxy)phenyl)porphyrin; DMA=N,N′‐dimethylacetamide) was synthesized by employing a new porphyrin‐based octacarboxylic acid ligand. 1? Mn exhibits high MnII density in the porous framework, providing it great Lewis‐acid heterogeneous catalytic capability for the cycloaddition of CO2 with epoxides. Strikingly, 1? Mn features excellent catalytic activity to the cycloaddition of CO2 to epoxides, with a remarkable initial turnover frequency 400 per mole of catalyst per hour at 20 atm. As‐synthesized 1? Mn also exhibits size selectivity to different epoxide substrates on account of their steric hindrance. The high catalytic activity, size selectivity, and stability toward the epoxides on catalytic cycloaddition of CO2 make 1? Mn a promising heterogeneous catalyst for fixation and utilization of CO2.  相似文献   

6.
A 3D lanthanide metal‐organic framework (MOF) with the formula [Dy2(L)2(H2O)2]n ( 1 ) (H3L = biphenyl‐3,4′,5‐tricarboxylic acid) was synthesized under solvothermal conditions and structurally characterized by elemental analysis, powder X‐ray diffraction analysis, infrared spectroscopy, and single‐crystal X‐ray diffraction analysis. Compound 1 features a 3D porous framework based on 1D rod‐shaped DyIII‐carboxylate chains. The efficient encapsulation and controllable release of an anticancer drug (5‐Fu) make it a promising drug delivery host. Furthermore, the GCMC simulation was used to probe the drug‐framework interaction at the atomic lever. The in vitro anti‐lung cancer activity of 1 and 5‐Fu loaded 1a were also evaluated using MTT assay.  相似文献   

7.
Palladium nanoparticles have been immobilized into an amino‐functionalized metal–organic framework (MOF), MIL‐101Cr‐NH2, to form Pd@MIL‐101Cr‐NH2. Four materials with different loadings of palladium have been prepared (denoted as 4‐, 8‐, 12‐, and 16 wt %Pd@MIL‐101Cr‐NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier‐transform infrared (FTIR) spectroscopy, powder X‐ray diffraction (PXRD), N2‐sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL‐101Cr‐NH2, electron tomography was employed to reconstruct the 3D volume of 8 wt %Pd@MIL‐101Cr‐NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high‐energy X‐rays (60 keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki–Miyaura cross‐coupling reaction. The best catalytic performance was obtained with the MOF that contained 8 wt % palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6 nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15 mol %). The material can be recycled at least 10 times without alteration of its catalytic properties.  相似文献   

8.
A simple strategy to rationally immobilize metalloporphyrin sites into porous mixed‐metal–organic framework (M′MOF) materials by a metalloligand approach has been developed to mimic cytochrome P450 monooxygenases in a biological system. The synthesized porous M′MOF of [Zn2(MnOH–TCPP)(DPNI)] ? 0.5 DMF ? EtOH ? 5.5 H2O ( CZJ‐1 ; CZJ=Chemistry Department of Zhejiang University; TCPP=tetrakis(4‐carboxyphenyl)porphyrin); DPNI=N,N′‐di(4‐pyridyl)‐1,4,5,8‐naphthalenetetracarboxydiimide) has the type of doubly interpenetrated cubic α‐Po topology in which the basic Zn2(COO)4 paddle‐wheel clusters are bridged by metalloporphyrin to form two‐dimensional sheets that are further bridged by the organic pillar linker DPNI to form a three‐dimensional porous structure. The porosity of CZJ‐1 has been established by both crystallographic studies and gas‐sorption isotherms. CZJ‐1 exhibits significantly high catalytic oxidation of cyclohexane with conversion of 94 % to the mixture of cyclohexanone (K) and cyclohexanol (A) (so‐called K–A oil) at room temperature. We also provided solid experimental evidence to verify the catalytic reaction that occurred in the pores of the M′MOF catalyst.  相似文献   

9.
The chemical stability of metal–organic frameworks (MOFs) is a major factor preventing their use in industrial processes. Herein, it is shown that judicious choice of the base for the Suzuki–Miyaura cross‐coupling reaction can avoid decomposition of the MOF catalyst Pd@MIL‐101‐NH2(Cr). Four bases were compared for the reaction: K2CO3, KF, Cs2CO3 and CsF. The carbonates were the most active and achieved excellent yields in shorter reaction times than the fluorides. However, powder XRD and N2 sorption measurements showed that the MOF catalyst was degraded when carbonates were used but remained crystalline and porous with the fluorides. XANES measurements revealed that the trimeric chromium cluster of Pd@MIL‐101‐NH2(Cr) is still present in the degraded MOF. In addition, the different countercations of the base significantly affected the catalytic activity of the material. TEM revealed that after several catalytic runs many of the Pd nanoparticles (NPs) had migrated to the external surface of the MOF particles and formed larger aggregates. The Pd NPs were larger after catalysis with caesium bases compared to potassium bases.  相似文献   

10.
A porous metal–organic framework (MOF), [Ni2(dobdc)(H2O)2]?6 H2O (Ni2(dobdc) or Ni‐MOF‐74; dobdc4?=2,5‐dioxido‐1,4‐benzenedicarboxylate) with hexagonal channels was synthesized using a microwave‐assisted solvothermal reaction. Soaking Ni2(dobdc) in sulfuric acid solutions at different pH values afforded new proton‐conducting frameworks, H+@Ni2(dobdc). At pH 1.8, the acidified MOF shows proton conductivity of 2.2×10?2 S cm?1 at 80 °C and 95 % relative humidity (RH), approaching the highest values reported for MOFs. Proton conduction occurs via the Grotthuss mechanism with a significantly low activation energy as compared to other proton‐conducting MOFs. Protonated water clusters within the pores of H+@Ni2(dobdc) play an important role in the conduction process.  相似文献   

11.
N掺杂碳基纳米材料由于具有高稳定性、良好的导电性、较大的孔体积和比表面积等特点而受到了国内外广泛的关注,在气体吸附、催化、电化学以及燃料电池等许多领域表现出潜在应用价值. N掺杂碳材料的制备主要采用两种方法,即后合成法和原位合成法.后合成法是指采用含 N化合物(如尿素等)对已合成的碳材料进行处理,但所制材料中 N含量往往偏低,且 N活性位不够稳定.要得到 N含量较高且稳定的 N掺杂碳材料常常采用原位合成法,即以富氮前体作为模板,在热解过程中 N原位嵌入碳纳米材料中,因而具有结构稳定, N含量丰富等优点.
  金属有机骨架(MOFs)材料是一种新型的类沸石类多孔材料,是由金属离子和有机配体通过配位键键合而成的拓扑结构.该类材料具有较高的孔隙率和比表面积以及结构可调控性等特点.通过调节金属中心和配体种类,引入含 N配体,可以得到不同类型的含 N的 MOFs.此外,含 N的 MOFs在一定温度下热解能有效减少 N元素的流失,因此, MOFs是一类优秀的用于制备 N掺杂碳基纳米材料的模板材料.近年来,以含 N的金属有机骨架材料为模板,通过简单热解一步合成 N掺杂碳基纳米催化剂,已成为国内外研究的热点之一.
  本文在惰性气氛中采用直接热解 Ni基 MOF方法制备了 N掺杂 C包裹的 Ni纳米颗粒,并利用 X射线粉末衍射(PXRD)、N2吸附脱附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子吸收光谱(AAS)、X射线光电子能谱(XPS)等对该复合材料的组成和结构进行了表征.
   PXRD测试结果表明,经过热解,催化剂中出现了大量的金属 Ni粒子,说明 Ni-MOF中的 Ni2+离子在热解过程中被原位还原成了 Ni纳米颗粒. N2吸附脱附结果表明,热解前的 Ni-MOF结构中只存在微孔结构,但是热解 Ni@C-N材料中生成了大量的介孔或大孔结构,从而有利于反应底物与催化剂活性位点的接触. SEM结果表明,在较低的温度下热解,催化剂可以保持 MOFs原来的构型,且结构疏松多孔;而在较高的温度下热解,如800oC,将有大量的碳纳米管生成. TEM结果表明,随着热解温度升高,催化剂中 Ni纳米颗粒逐渐增大.从 HRTEM测试结果可以清晰看出,高温热解时有石墨烯结构生成,并且生成的 Ni纳米颗粒原位嵌入了石墨烯结构中,因而有利于 Ni纳米颗粒的分散,从而提高催化剂的活性. XPS结果进一步证明,热解过程中, Ni2+被原位还原成了零价的 Ni纳米粒子,此外, N 1s谱图也进一步证明 N在热解过程中原位嵌入了生成的石墨烯结构中.
  随后,以乙基苯选择性氧化为模型反应,测试了 Ni@C-N材料的催化活性.结果表明,该材料在烷烃选择氧化反应中表现出很高的催化活性和选择性,尤其是 Ni@C-N-900-8h,在温和的反应条件下,可有效催化一系列饱和烷烃的选择氧化,获得很高的氧化产物收率,且重复利用多次后其活性和选择性没有明显的下降.  相似文献   

12.
A terbium–organic framework (Tb‐MOF) was prepared using a previously reported procedure. Tb‐MOF was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, powder X‐ray diffraction and surface area analysis. Tb‐MOF was employed as a heterogeneous Lewis acid catalyst for the synthesis of β‐aminoalcohols. Also, the effect of ultrasonic irradiation was examined in the catalytic aminolysis of styrene oxide. The reaction conditions were optimized by variation of reaction time, catalyst concentration and solvent. A variety of β‐aminoalcohols were synthesized and characterized. The Tb‐MOF catalyst showed excellent selectivity and high yield for these transformations.  相似文献   

13.
In our continuing quest to develop a metal–organic framework (MOF)‐catalyzed tandem pyrrole acylation–Nazarov cyclization reaction with α,β‐unsaturated carboxylic acids for the synthesis of cyclopentenone[b]pyrroles, which are key intermediates in the synthesis of natural product (±)‐roseophilin, a series of template‐induced Zn‐based ( 1–3 ) metal‐organic frameworks (MOFs) have been solvothermally synthesized and characterized. Structural conversions from non‐porous MOF 1 to porous MOF 2 , and back to non‐porous MOF 3 arising from the different concentrations of template guest have been observed. The anion–π interactions between the template guests and ligands could affect the configuration of ligands and further tailor the frameworks of 1–3 . Futhermore, MOFs 1–3 have shown to be effective heterogeneous catalysts for the tandem acylation–Nazarov cyclization reaction. In particular, the unique structural features of 2 , including accessible catalytic sites and suitable channel size and shape, endow 2 with all of the desired features for the MOF‐catalyzed tandem acylation–Nazarov cyclization reaction, including heterogeneous catalyst, high catalytic activity, robustness, and excellent selectivity. A plausible mechanism for the catalytic reaction has been proposed and the structure–reactivity relationship has been further clarified. Making use of 2 as a heterogeneous catalyst for the reaction could greatly increase the yield of total synthesis of (±)‐roseophilin.  相似文献   

14.
A ruthenium trichloride complex has been loaded into an aluminium metal–organic framework (MOF), MOF‐253, by post‐synthetic modification to give MOF‐253‐Ru. MOF‐253 contains open bipyridine sites that are available to bind with the ruthenium complex. MOF‐253‐Ru was characterised by elemental analysis, N2 sorption and X‐ray powder diffraction. This is the first time that a Ru complex has been coordinated to a MOF through post‐synthetic modification and used as a heterogeneous catalyst. MOF‐253‐Ru catalysed the oxidation of primary and secondary alcohols, including allylic alcohols, with PhI(OAc)2 as the oxidant under very mild reaction conditions (ambient temperature to 40 °C). High conversions (up to >99 %) were achieved in short reaction times (1–3 h) by using low catalyst loadings (0.5 mol % Ru). In addition, high selectivities (>90 %) for aldehydes were obtained at room temperature. MOF‐253‐Ru can be recycled up to six times with only a moderate decrease in substrate conversion.  相似文献   

15.
The application of ammonium borane (AB) as a hydrogen storage material is limited by the sluggish kinetics of H2 release. Two catalysts based on metal–organic frameworks (MOFs) have been prepared either by applying MOF as precursors or by the in situ reduction method. In the release of H2 from AB, the high H2 content of the whole system, the remarkably lower reaction onset temperature, the significantly increased H2 release rates at ≤90 °C, and the decreased reaction exothermicity have all been achieved with only 1.0 mol % MOF‐based catalyst. Moreover, the clear catalytic diversity of three catalysts has been observed and discussed. The in situ synthesized Ni0 sites and the MOF supports in the catalysts were proven to show significant and different effects to promote the catalytic activities. With MOF‐based catalysts, both the enhanced kinetics and the high H2 capacity of the AB system present great advantages for future use.  相似文献   

16.
The novel metal–organic framework Co2(bdda)1.5(OAc)1·5H2O (UoB‐3) was synthesized via a simple method at room temperature. UoB‐3 was characterized by the different methods, including X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT‐IR), N2‐adsorption/desorption and elemental analysis. The catalytic ability of UoB‐3 was detected to be excellent for primary and secondary alcohols oxidation reaction with high yields under solvent‐free conditions. Moreover, UoB‐3 was highly active for Henry reaction of different aldehydes with nitromethane in water as a green solvent. The nanocatalyst can be recycled for five consecutive cycles without losing its activity and structural rigidity. The antibacterial activity of UoB‐3 nanostructures towards Gram‐negative bacteria, Escherichia coli and Gram‐positive bacteria, Bacillus cereus was also evaluated by using an inhibition zone test. These nanostructures exhibited strong antibacterial effect against both of them. The purpose of this study was the developing metal–organic framework materials with the enhanced activity in various fields.  相似文献   

17.
The metal–organic framework (MOF) [Pd(2‐pymo)2]n (2‐pymo=2‐pyrimidinolate) was used as catalyst in the hydrogenation of 1‐octene. During catalytic hydrogenation, the changes at the metal nodes and linkers of the MOF were investigated by in situ X‐ray absorption spectroscopy (XAS) and IR spectroscopy. With the help of extended X‐ray absorption fine structure and X‐ray absorption near edge structure data, Quick‐XAS, and IR spectroscopy, detailed insights into the catalytic relevance of Pd2+/Pd0 in the hydrogenation of 1‐octene could be achieved. Shortly after exposure of the catalyst to H2 and simultaneously with the hydrogenation of 1‐octene, the aromatic rings of the linker molecules are hydrogenated rapidly. Up to this point, the MOF structure remained intact. After completion of linker hydrogenation, the linkers were also protonated. When half of the linker molecules were protonated, the onset of reduction of the Pd2+ centers to Pd0 was observed and the hydrogenation activity decreased, followed by fast reduction of the palladium centers and collapse of the MOF structure. Major fractions of Pd0 are only observed when the hydrogenation of 1‐octene is almost finished. Consequently, the Pd2+ nodes of the MOF [Pd(2‐pymo)2]n are identified as active centers in the hydrogenation of 1‐octene.  相似文献   

18.
Immobilized nickel catalysts SBA*‐ L ‐x/Ni ( L =bis(2‐pyridylmethyl)(1H‐1,2,3‐triazol‐4‐ylmethyl)amine) with various ligand densities ( L content (x)=0.5, 1, 2, 4 mol % Si) have been prepared from azidopropyl‐functionalized mesoporous silicas SBA‐N3x. Related homogeneous ligand LtBu and its NiII complexes, [Ni( LtBu )(OAc)2(H2O)] ( LtBu /Ni) and [Ni( LtBu )2]BF4 (2 LtBu /Ni), have been synthesized. The L /Ni ratio (0.9–1.7:1) in SBA*‐ L ‐x/Ni suggests the formation of an inert [Ni L 2] site on the surface at higher ligand loadings. SBA*‐ L ‐x/Ni has been applied to the catalytic oxidation of cyclohexane with m‐chloroperbenzoic acid (mCPBA). The catalyst with the lowest loading shows high activity in its initial use as the homogeneous LtBu /Ni catalyst, with some metal leaching. As the ligand loading increases, the activity and Ni leaching are suppressed. The importance of site‐density control for the development of immobilized catalysts has been demonstrated.  相似文献   

19.
Luminescent 3D lanthanide metal–organic framework (Ln‐MOF) {[Tb2(TATAB)2] ? 4 H2O ? 6 DMF}n ( 1 ) was synthesized under solvothermal conditions by using flexible ligand 4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐p‐aminobenzoate (TATAB). A phase transition was observed between low temperature and room temperature. The luminescence of 1 could be enhanced by formaldehyde and quenched efficiently by trace amounts of benzaldehyde in solvents such as benzyl alcohol (0.01–2.0 vol %) and ethanol (0.01–2.5 vol %). This is the first use of a Ln‐MOF as chemical sensor for both formaldehyde and benzaldehyde. The high sensitivity and selectivity of the luminescence response of 1 to benzaldehyde allows it to be used as an excellent sensor for identifying benzaldehyde and provides a simple and convenient method for detecting traces of benzaldehyde in benzyl alcohol based injections. This work establishes a new strategy for detection of benzaldehyde in benzyl alcohol by luminescent MOFs.  相似文献   

20.
A copper(I)‐based metal–organic framework ({[Cu2Br2(pypz)]n?nH2O} (Cu—Br–MOF) [pypz=bis[3,5‐dimethyl‐4‐(4’‐pyridyl)pyrazol‐1‐yl] methane] has been synthesized by using an elongated and flexible bridging ligand. The structure analysis reveals that each pypz ligand acts as a tritopic ligand connected to two Cu2Br2 dimeric units, forming a one‐dimensional zig–zag chain, and these chains further connected by a Cu2Br2 unit, give a two‐dimensional framework on the bc‐plane. In the Cu2Br2 dimeric unit, the copper ions are four coordinated, thereby possessing a tetrahedral geometry; this proves to be an excellent heterogeneous catalyst for the aerobic homocoupling of arylboronic acids under mild reaction conditions. This method requires only 3 mol % of catalyst and it does not require any base or oxidant—compared to other conventional (Cu, Pd, Fe, and Au) catalysts—for the transformation of arylboronic acids in very good yields (98 %). The shape and size selectivity of the catalyst in the homocoupling was investigated. The use of the catalyst was further extended to the epoxidation of olefins. Moreover, the catalyst can be easily separated by simple filtration and reused efficiently up to 5 cycles without major loss of reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号