首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The aim of this study was to evaluate the surface adsorption capacity of CrFeO3 nanoparticle‐loaded activated carbon (CrFeO3‐NPs–AC) for the removal of a cationic dye (methyl violet, MV). CrFeO3‐NPs were hydrothermally synthesized and loaded on AC followed by characterization using X‐ray diffraction, field‐emission scanning electron microscopy and energy‐dispersive and Fourier transform infrared spectroscopies. The CrFeO3‐NPs were tested for in vitro antibacterial activities against Gram‐positive (Staphylococcus aureus) and Gram‐negative (Pseudomonas aeruginosa) bacteria. Minimum inhibitory and minimum bactericidal concentrations of CrFeO3‐NPs–AC were obtained to be 50 and 100 μg ml?1, respectively, against S. aureus and 25 and 50 μg ml?1 against P. aeruginosa. These results indicated the antibacterial properties of CrFeO3‐NPs–AC. To investigate the adsorption process, several systematic experiments were designed by varying parameters such as adsorbent mass, pH, initial MV concentration and sonication time. The adsorption process was modelled and the optimal conditions were determined to be 0.013 g, 7.4, 15 mg l?1 and 8 min for adsorbent mass, pH, MV concentration and sonication time, respectively. The real experimental data were found to be efficiently explained by response surface methodology and genetic algorithm model. Kinetic studies for MV adsorption showed rapid sorption dynamics described by a second‐order kinetic model, suggesting a chemisorption mechanism. Then, the experimental equilibrium data obtained at various concentrations of MV and adsorbent masses were fitted to conventional Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Dye adsorption equilibrium data were fitted well to the Langmuir isotherm. From the Langmuir model, the maximum monolayer capacity was calculated to be 65.67 mg g?1 at optimum adsorbent mass.  相似文献   

2.
This paper focuses on the development of an effective methodology to obtain the optimum ultrasonic‐assisted removal of a dye, safranin O (SO), under optimum conditions that maximize the removal percentage, using ZnO nanorod‐loaded activated carbon (ZnO‐NRs‐AC) in aqueous solution. Central composite design coupled with genetic algorithm was used for parameter optimization. The effects of variables such as pH, initial dye concentration, mass of ZnO‐NRs‐AC and sonication time were studied. The interactive and main effects of these variables were evaluated using analysis of variance. The structural and physicochemical properties of the ZnO‐NRs‐AC adsorbent were investigated using field emission scanning electron microscopy and X‐ray diffraction. Adsorption equilibrium data were fitted well with the Langmuir isotherm and the maximum monolayer capacity was found to be 32.06 mg g?1. Studies of the adsorption kinetics of the SO dye showed a rapid sorption dynamic with a pseudo‐second‐order kinetic model, suggesting a chemisorption mechanism.  相似文献   

3.
The proposed research, presents the synthesis, characterization, and photocatalytic accomplishment of ZnO nanoplate (ZnOs) modified with activated carbon derived from Konar bark. The obtained nanocomposite (photocatalyst) was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). First, the ZnO photocatalyst and activated carbon (AC) were prepared separately; then, the ZnO photocatalyst was modified with activated carbon. Various parameters namely pH, degradation time, and photocatalyst dose were optimized and studied in multivariate method by design expert7 software. The synergic efficiency of ZnO‐AC (adsorbent/photocatalyst) exhibited a good rate of ciprofloxacin (CIP) removal under visible irradiation. In addition, first pseudo order kinetic and isotherms equations were calculated. Moreover, the identification of degradation products was performed by ultra performance liquid chromatography‐tandem mass spectrometer (UPLC‐MS/MS). It is for the first time that a ZnO photocatalyst modified with activated carbon (ZnO‐AC) applied for CIP degradation.  相似文献   

4.
In this study, the CuS nanoparticles loaded on activated carbon (CuS‐NPs‐AC) composite was synthesized and then, characterized by XRD and FE‐SEM analyses. The prepared composite was used as a potential adsorbent for the simultaneous ultrasound‐assisted removal of Indigo Carmine (IC) and Safranin‐O (SO). The CuS‐NPs‐AC dose (0.01‐0.03 g), sonication time (1‐5 min), initial SO concentration (5‐15 mg L‐1) and initial IC concentration (5‐15 mg L‐1) as expectable effective parameters were studied by central composite design (CCD) under response surface methodology (RSM) to obtain an useful knowledge about the effect of simultaneous interaction between IC and SO on their removal percentage. The optimum SO and IC removal percentages were determined to be 98.24 and 97.15% at pH = 6, 0.03 g of the CuS‐NPs‐AC, 3 min sonication time, 12 and 10 mg L‐1 of IC and SO. The values of coefficient of determination (R2) for SO and IC were 0.9608 and 0.9796, respectively, indicating the favorable fitness of the experimental data to the second order polynomial regression model. The isotherm data were well correlated with Freundlich model. The maximum monolayer adsorption capacities of 87.5 and 69.90 mg g‐1 at room temperature for IC and SO in the investigated binary system expressed the high efficiency of the novel adsorbent for water cleanup within a short time. The investigation of correlation between time and rate of adsorption revealed that IC and SO adsorption onto the CuS‐NPs‐AC followed pseudo‐second‐order and intra‐particle diffusion simultaneously.  相似文献   

5.
6.
TiO2 nanoparticles deposited on activated carbon (TiO2–NP–AC) was prepared and characterized by XRD and SEM analysis. Subsequently, simultaneous ultrasound‐assisted adsorption of Cu2+ and Cr3+ ions onto TiO2‐NPs‐AC after complexation via eriochrome cyanine R (ECR) has been investigated with UV–Vis and FAA spectrophotometer. Spectra overlapping of the ECR‐Cu and ECR‐Cr complex was resolve by derivative spectrophotometric technique. The effects of various parameters such as initial Cu2+ (A) and Cr3+ (B) ions concentrations, TiO2‐NPs‐AC mass (C), sonication time (D) and pH (E) on the removal percentage were investigated and optimized by central composite design (CCD). The optimize conditions were set as: 4.21 min, 0.019 mg, 20.02 and 13.22 mg L?1 and 6.63 for sonication time, TiO2–NP–AC mass, initial Cr3+ and Cu2+ ions concentration and pH, respectively. The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption process and maximum adsorption capacity of 105.26 and 93.46 mg g?1 were obtained for Cu2+ and Cr3+ ions, respectively. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo second order and intraparticle diffusion models.  相似文献   

7.
《先进技术聚合物》2018,29(6):1834-1842
Fabrication, characterization, and properties of novel poly(benzimidazole‐amide)/functionalized ZnO nanocomposites (PBIA/APS‐ZnO NCs) were investigated. At first, an aromatic PBA containing 3 imidazole units per repeat unit was synthesized by direct polycondensation of 1,3‐bis(5‐carboxylic acid‐2‐benzimidazole)benzene (BCAB) with 5‐(2‐benzimidazole)‐1,3‐phenylenediamine (DAMI) with good yield as a polymeric matrix. The periphery of zinc oxide nanoparticles (ZnO NPs) was modified with 3‐aminopropyltriethoxysilane (APS) to have a better dispersion NPs and enhancing interactions between nanoparticles and PBIA matrix. Different percentages of functionalized NPs (0, 4, 8, and 12 wt.%) were then embedded in PBA matrix through ultrasonic irradiation technique. Fourier transform infrared and thermo‐gravimetric analysis (TGA) confirmed that APS was successfully attached on the ZnO NP surface. The obtained NCs were characterized by means of Fourier transform infrared, X‐ray diffraction, scanning electron microscopy, and TGA. The TGA of the PBIA/APS‐ZnO NCs showed the enhancement in the thermal stability in comparison with the neat PBIA and that this increase is higher when the NP content increases. Scanning electron microscopy analyses of NCs revealed that the dispersion of APS‐ZnO NPs was uniformly done in the PBIA matrix.  相似文献   

8.
9.
《中国化学会会志》2017,64(7):813-821
Zinc oxide nanoparticles (ZnO NPs ) were prepared by a simple, convenient, and cost‐effective wet chemical method using the biopolymer starch. The prepared ZnO NPs were characterized by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), energy‐dispersive X‐ray (EDX ), Fourier transform infrared (FT‐IR ), and UV ‐visible spectroscopic techniques. The average crystallite size calculated from XRD data using the Debye–Scherer equation was found to be 15 nm. The electrochemical behavior of caffeine (CAF ) was studied using a glassy carbon electrode (GCE ) modified with zinc oxide nanoparticles by cyclic voltammetry (CV ) and differential pulse voltammetry (DPV ). Compared to unmodified GCE , ZnO NPs‐ modified GCE (ZnO NPs MGCE ) exhibited excellent electrocatalytic activity towards CAF oxidation, which was evident from the increase in the peak current and decrease in the peak potential. Electrochemical impedance study suggested that the charge‐transfer capacity of GCE was significantly enhanced by ZnO NPs . The linear response of the peak current on the concentrations of CAF was in the range 2–100 μM . The detection limit was found to be 0.038 μM. The proposed sensor was successfully employed for the determination of CAF in commercial beverage samples.  相似文献   

10.
Covalent surface functionalization of synthesized ZnO nanoparticles (NP)s with ethylenediaminetetraacetic acid (EDTA) was successfully carried out. Modified ZnO‐EDTA NPs as a viable and inexpensive filler were incorporated into poly(vinyl chloride) PVC matrix after their chemical modification to investigate the agglomeration behavior. All prepared materials including modified NPs and PVC/ZnO‐EDTA nanocomposites (NC)s were analyzed by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, X‐ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. Fabricated PVC/ZnO‐EDTA NCs were reported to have high transparency and improved mechanical properties compared with PVC. Modified ZnO and the fabricated NCs were shown to exhibit excellent antibacterial activity against two bacteria species: Escherichia coli and Staphylococcus aureus. The obtained NCs could be considered as self‐extinguishing materials on the basis of the LOI values. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
ZnO–SnO2 nanoparticles were prepared by coprecipitation method; then Mg, with different molar ratios and calcination temperatures, was loaded on the coupled nanoparticles by impregnation method. The synthesized nanoparticles were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) techniques. Based on XRD results, the ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles were made of ZnO and SnO2 nanocrystallites. According to DRS spectra, the band gap energy value of 3.13 and 3.18 eV were obtained for ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles, respectively. BET analysis revealed a Type III isotherm with a microporous structure and surface area of 32.051 and 49.065 m2 g?1 for ZnO–SnO2 and Mg/ZnO–SnO2, respectively. Also, the spherical shape of nanocrystallites was deduced from TEM and FESEM images. The photocatalytic performance of pure ZnO–SnO2 and Mg/ZnO–SnO2 was analyzed in the photocatalytic removal of methyl orange (MO). The results indicated that Mg/ZnO–SnO2 exhibited superior photocatalytic activity to bare ZnO–SnO2 photocatalyst due to high surface area, increased MO adsorption and larger band gap energy. Maximum photocatalytic activity of Mg/ZnO–SnO2 nanoparticles was obtained with 0.8 mol% Mg and calcination temperature of 350°C.  相似文献   

12.
13.
In this study, nanocrystalline cellulose (NCC) prepared from microcrystalline cellulose using high‐intensity ultrasonication as mechanical method without any chemical treatment. The obtained NCC with around 30–50 nm diameters, utilized as support, reducing and stabilizing agent for in‐situ green and eco‐friendly synthesis of silver nanoparticles (Ag NPs). The catalytic activity of composite was examined for degradation of environmental pollutants. The structure of as‐synthesized composite (Ag@NCC) was characterized by ultraviolet–visible spectroscopy (UV–vis), field emission scanning electron microscopy (FE‐SEM); Transmission electron microscopy (TEM); Energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA). The results of the catalytic reaction experiments showed that spherically shaped silver nanoparticles of around 20 nm distributed on the surface of nanocellulose demonstrated high catalytic efficiency towards the removal of methyl orange (MO) and 4‐nitrophenol (4‐NP).  相似文献   

14.
Tin sulfide nanoparticles(SnS -NPs) were prepared in aqueous solution at room temperature on the surface of activated carbon(AC) and were investigated using field-emission scanning electron mi-croscopy(FE-SEM), transmission electron microscopy(TEM), X-ray diffraction, reflective ultravio-let-visible spectrophotometry, and spectrofluorimetry. Calculations based on the SEM and TEM images showed that the sizes of the SnS -NPs immobilized on the AC were 30–70 nm. The prepared nanocomposite was used as a heterogeneous Lewis acid catalyst for the three-components one-pot synthesis of 4H-pyrano[2,3-c]pyrazole derivatives in ethanol at 80 ℃. The reactions were efficiently performed in the presence of the prepared catalyst in short reaction times, and gave the desired products in high yields. This catalyst can be easily recovered by simple filtration and recycled up to eight consecutive times without significant loss of its efficiency.  相似文献   

15.
In the present work, Mn‐doped CuO‐NPs‐AC was prepared by a simple method, characterized using various techniques such as FESEM, EDX, XRD, PSD, and pHpzc and finally used for the adsorption of malachite green (MG) and methyl orange (MO) in a number of single and binary solutions. A series of adsorption experiments were conducted to investigate and optimize the influence of various factors (such as different pH, concentration of MG and MO, adsorbent mass, and sonication time) on the simultaneous adsorption of MG and MO using response surface methodology. Under optimal conditions of pH 10, adsorbent dose of 0.02 g, MG concentration of 30 mg L?1, MO concentration of 30 mg L?1, and sonication time of 4.5 min at room temperature, the maximum predicted adsorption was observed to be 100.0%, for both MG and MO, showing that there is a favorable harmony between the experimental data and model predictions. The adsorption isotherm of MO and MG by Mn‐doped CuO‐NPs‐AC could be well clarified by the Langmuir model with maximum adsorption capacity of 320.69 mg g?1 and 290.11 mg g?1 in the single solution and 233.02 mg g?1 and 205.53 mg g?1 in the binary solution by 0.005 g of adsorbent mass for MG and MO, respectively. Kinetic studies also revealed that both MG and MO adsorption were better defined by the pseudo‐second order model for both solutions. In addition, the thermodynamic constant studies disclosed that the adsorption of MG and MO was likely to be influenced by a physisorption mechanism. Eventually, the reusability of the Mn‐doped CuO‐NPs‐AC after six times showed a reduction in the adsorption percentage of MG and MO.  相似文献   

16.
In this study, core‐shell structures of magnetite nanoparticles coated with CMK‐8 ordered mesoporous carbon (Fe3O4@SiO2‐CMK‐8 NPs) have been successfully synthesized for the first time by carbonizing sucrose inside the pores of the Kit‐6 mesoporous silica. The nano‐sized mesoporous particles were characterized by X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscope, dynamic light scattering, vibrating‐sample magnetometer, Brunauer–Emmett–Teller (BET) and transmission electron microscopy instruments. The obtained nanocomposite was used for removal of Reactive Yellow 160 (RY 160) dye from aqueous samples. The N2 adsorption–desorption method (at 77 K) confirmed the mesoporous structure of synthesized Fe3O4@SiO2‐CMK‐8 NPs. Also, the surface area was calculated by the BET method and Langmuir plot as 276.84 m2/g and 352.32 m2/g, respectively. The surface area, volume and pore diameter of synthesized nanoparticles (NPs) were calculated from the pore size distribution curves using the Barrett–Joyner–Halenda formula (BJH). To obtain the optimum experimental variables, the effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array experimental design method. According to the experimental results, about 90.0% of RY 160 was removed from aqueous solutions at the adsorbent amount of 0.06 g, pH 3 and ionic strength = 0.05 m during 10 min. The pseudo‐second order kinetic model provided a very good fit for the RY 160 dye removal (R2 = 0.999). The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were applied to describe the equilibrium isotherms, and the Langmuir isotherm showed the best fit to data with the maximum adsorption capacity of 62.893 mg/g. Furthermore, the Fe3O4@SiO2‐CMK‐8 NPs could be simply recovered by external magnet, and exhibited recyclability and reusability for a subsequent six runs.  相似文献   

17.
Recent advances in photocatalysis focus on the development of materials with hierarchical structure and on the surface plasmon resonance (SPR) phenomenon exhibited by metal nanoparticles (NPs). In this work, both are combined in a material where size‐controllable Ag‐NPs are uniformly loaded onto the hierarchical microporous and mesoporous and nanocolumnar structures of ZnO, resulting in Ag‐NP/ZnO nanocomposites. The embedded Ag‐NPs slightly decrease the hydrophobicity of fibrous ZnO, improve its wettability, and increase the absorption of formaldehyde (H2CO) onto the photocatalyst, all of this resulting in excellent photodegradation of formaldehyde in aqueous solution. Besides, we found that Ag‐NPs with optimal size not only accelerate the charge transfer to the surface of ZnO, but also strengthen the SPR effect in the intercolumnar channels of fibrous ZnO particles combining with high concentration of photo‐generated radical species. The micro‐to‐mesoporous ZnO is like a nanoarray packed Ag‐NPs. With Ag‐NPs of diameter 2.5 < ? < 6.5 nm, ZnO exhibits the most superior photodegradation rate constant value of 0.0239 min?1 with total formaldehyde removal of 97%. This work presents a new feasible approach involving highly sophisticated Ag‐NP/ZnO architecture combining the SPR effect and hierarchically ordered structures, which results in high photocatalytic activity for formaldehyde photodegradation.  相似文献   

18.
This study describes the development, electrochemical characterization and utilization of 8,9‐dihydroxy‐7‐methyl‐12H‐benzothiazolo [2,3‐b]quinazolin‐12‐one (DMBQ)/ZnO nanoparticles (ZnO/Nps)‐carbon paste electrode (DMBQ/ZnO/NPs/CPE) as a modified sensor for the electrocatalytic determination of cysteine (Cys) in the presence of folic acid (FA). ZnO/NPs was synthesized and characterized by X‐ray diffraction (XRD) method. The prepared DMBQ/ZnO/NPs/CPE was developed as a highly sensitive voltammetric sensor for determination of Cys in the presence of FA in real samples. Square wave voltammetry (SWV) of Cys exhibited linear dynamic range with a detection limit (3σ) of 0.05 µmol/L.  相似文献   

19.
In this work, MOF‐5 composited with Ag2O nanoparticles was prepared and characterized via X‐ray diffraction, field emission‐scanning electron microscopy, energy‐dispersive spectroscopy and FT‐IR analysis. This new material was subsequently employed for removing basic yellow dye [Auramine O (AO)] from aqueous solution under ultrasound irradiation. Several experiments were designed by central composite design in which operational parameters such as such as pH, MOF‐5‐Ag2O mass and initial concentration of AO involved in the process were optimized. The significance of individual parameters and their possible interactions were investigated using analysis of variance (anova ). The optimum values of 6, 0.025 g and 6 mg l?1 were obtained for the pH, MOF‐5‐Ag2O‐NPs mass and the initial concentrations of AO, respectively, with desirability of 1.0. At such conditions, the efficiency for the removal of AO was found to be 89.45%. Various isotherm models for fitting the experimental equilibrium data were studied, and it was found that the Langmuir model has the highest efficiency for correlation of experimental equilibrium data, so that the monolayer adsorption capacity of MOF‐5‐Ag2O for successful removal of AO was 260.70 mg g?1 at optimal conditions.  相似文献   

20.
《先进技术聚合物》2018,29(8):2174-2183
The present study deals with the immobilization of ZnO nanoparticles (NPs) as nanofiller inside poly(vinyl alcohol) (PVA) by solution casting method which is a low‐cost, environmental‐friendly, and rapid method of sonochemistry. Firstly, the surface of ZnO NPs was treated by bovine serum albumin (BSA) in the phosphate‐buffered solution under ultrasonic cavitation. Three diverse polymeric nanocomposites (NCs) are formed by changing the percentage of ZnO@BSA NPs (3, 6, and 9 wt%) with same amount of PVA. The structure properties, morphology, and thermal stability of prepared NCs were determined through Fourier transform‐infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy (EDX) and optical UV‐Visible spectrum, transmission electron microscopy (TEM), and field emission scanning electron microscopy. The presence and the dispersal of the ZnO@BSA NPs in the PVA matrix were recognized by TEM. In the X‐ray diffraction analysis, the values of mean particle size using Debye‐Scherrer equation were estimated in the range 4 to 6 nm that is almost in agreement with TEM analysis. Increase of 14% in thermal stability and also increase of more than 2‐fold of the tensile strength of PVA/ZnO@BSA NC 9 wt% in respect to the pure PVA showed that the modified NPs well dispersed within PVA and attached to it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号