首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).  相似文献   

2.
Highly exfoliated isotactic‐polypropylene/alkyl‐imidazolium modified montmorillonite (PP/IMMT) nanocomposites have been prepared via in situ intercalative polymerization. TEM and XRD results indicated that the obtained composites were highly exfoliated PP/IMMT nanocomposites and the average thickness of IMMT in PP matrix was less than 10 nm, and the distance between adjacent IMMT particles was in the range of 20–200 nm. The isothermal crystallization kinetics of highly exfoliated PP/IMMT nanocomposites were investigated by using differential scanning calorimeter(DSC) and polarized optical microscope (POM). The crystallization half‐time t1/2, crystallization peak time tmax, and the Avrami crystallization rate constant Kn showed that the nanosilicate layers accelerate the overall crystallization rate greatly due to the nucleation effect, and the crystallization rate was increased with the increase in MMT content. Meanwhile, the crystallinity of PP in nanocomposites decreased with the increase in clay content which indicated the PP chains were confined by the nanosilicate layers during the crystallization process. Although the well‐dispersed silicate layers did not have much influence on spherulites growth rate, the nucleation rate and the nuclei density increased significantly. Accordingly, the spherulite size decreased with the increase in MMT content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2215–2225, 2009  相似文献   

3.
This article reported a novel technology, solid state shear milling (S3M), to prepare poly(ethylene terephthalate)/Na+‐montmorillonite nanocomposites using the pristine Na+‐MMT without organic modification so as to avoid the problem that the organic modifiers, used for MMT treatment will decompose at high processing temperature of PET, and the structure and properties of the obtained samples were investigated. XRD and TEM analyses showed that Na+‐MMT layers were partially delaminated and intercalated, and uniformly dispersed in the PET matrix when suffering from the strong three dimensional shearing forces of pan‐milling. DSC analysis showed that Na+‐MMT serves as a nucleating agent, increasing the crystallization rate as well as the crystallization temperature of PET. The properties such as thermal stability and tensile strength of the PET/Na+‐MMT nanocomposites prepared by S3M got remarkably improved. Solid state shear milling (S3M) method was a simple and efficient method to get polymer/Na+‐MMT nanocomposites with pretty good performances without organic modification of pristine Na+‐MMT. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 807–817, 2008  相似文献   

4.
Synthesis of poly(styrene‐block‐tetrahydrofuran) (PSt‐b‐PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt‐b‐PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt‐b‐PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2190–2197, 2009  相似文献   

5.
Summary: Poly(propylene)/monoalkylimidazolium‐modified montmorillonite (PP/IMMT) nanocomposites were prepared by in situ intercalative polymerization of propylene with TiCl4/MgCl2/MMT catalyst. The PP synthesized possessed high isotacticity and molecular weight. Both wide‐angle X‐ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the nanocomposite formation with exfoliated MMT homogeneously distributed in the PP matrix. A thermal stability study revealed that the nanocomposites possess good thermal stability.

X‐ray diffraction patterns of PP/IMMT (MMT = 2.2 wt.‐%) nanocomposite before and after processing.  相似文献   


6.
This work dealt with the effect of using an acrylic acid modified polypropylene (PP‐g‐AA) as a compatibilizing agent for the intercalation/exfoliation of an organically modified montmorillonite (o‐MMT) in a polypropylene matrix (PP). Two PP‐g‐AA containing the same AA content (6 wt %) and having different molar masses were used. The o‐MMT content was 0, 1, or 5 wt % of total mass and the PP‐g‐AA/o‐MMT mass ratio was 0/1, 1/1, 2/1, or 5/1. Results of wide angle X‐ray scattering (WAXS) and transmission electronic microscopy (TEM) showed that without the PP‐g‐AA, the o‐MMT was dispersed in the PP/o‐MMT in a micrometer scale, similar to a conventional microcomposite. With the PP‐g‐AA, the o‐MMT was much better dispersed and its interlayers were intercalated and partly exfoliated by the polymer chains. Compared with the neat PP, some PP/PP‐g‐AA/o‐MMT systems exhibited higher G′ values and a yield stress at low frequencies, indicating that the PP‐g‐AA promoted the intercalation/exfoliation of the o‐MMT. The compatibilizing efficiency of those two PP‐g‐AA was very similar. Generally speaking, the higher the PP‐g‐AA/o‐MMT mass ratio, the better the state of dispersion and the degree of intercalation/exfoliation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1811–1819, 2008  相似文献   

7.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

8.
Three polystyrene (PS)/clay hybrid systems have been prepared via in situ polymerization of styrene in the presence of unmodified sodium montmorillonite (Na‐MMT) clay, MMT modified with zwitterionic cationic surfactant octadecyldimethyl betaine (C18DMB) and MMT modified with polymerizable cationic surfactant vinylbenzyldimethyldodecylammonium chloride (VDAC). X‐ray diffraction and TEM were used to probe mineral layer organization and to expose the morphology of these systems. The PS/Na‐MMT composite was found to exhibit a conventional composite structure consisting of unintercalated micro and nanoclay particles homogeneously dispersed in the PS matrix. The PS/C18DMB‐MMT system exhibited an intercalated layered silicate nanocomposite structure consisting of intercalated tactoids dispersed in the PS matrix. Finally, the PS/VDAC‐MMT system exhibited features of both intercalated and exfoliated nanocomposites. Systematic statistical analysis of aggregate orientation, characteristic width, length, aspect ratio, and number of layers using multiple TEM micrographs enabled the development of representative morphological models for each of the nanocomposite structures. Oxygen barrier properties of all three PS/clay hybrid systems were measured as a function of mineral composition and analyzed in terms of traditional Nielsen and Cussler approaches. A modification of the Nielsen model has been proposed, which considers the effect of layer aggregation (layer stacking) on gas barrier. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1733–1753, 2007  相似文献   

9.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with organically modified montmorillonite (MMT). The organic MMT layers were exfoliated in a nylon‐66 matrix as confirmed by wide‐angle X‐ray diffraction (WAXD) and transmission electron microscopy. The presence of MMT layers increased the crystallization temperature of nylon‐66 because of the heterogeneous nucleation of MMT. Multiple melting behavior was observed in the nylon‐66/MMT nanocomposites, and the MMT layers induced the formation of form II spherulites of nylon‐66. The crystallite sizes L100 and L010 of nylon‐66, determined by WAXD, decreased with an increasing MMT content. High‐temperature WAXD was performed to determine the Brill transition in the nylon‐66/MMT nanocomposites. Polarized optical microscopy demonstrated that the dimension of nylon‐66 spherulites decreased because of the effect of the MMT layers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2861–2869, 2003  相似文献   

10.
A Haake torque rheometer equipped with an internal mixer is used to study the influence of the amount of sodium montmorillonite (Na+‐MMT) and organically modified MMT (O‐MMT) on X‐ray diffraction (XRD), morphology, and mechanical characteristics of rigid poly (vinyl chloride) (PVC)/Na+‐MMT and PVC/O‐MMT nanocomposites, respectively. Results of XRD and transmission electron microscopy (TEM) indicate that MMT is partially encapsulated and intercalated in the rigid PVC/Na+‐MMT nanocomposites. However, results of XRD and TEM show MMT is partially intercalated and exfoliated in the rigid PVC/O‐MMT nanocomposites. Tensile strength, yield strength, and elongation at break of the rigid PVC/MMT nanocomposites were improved simultaneously with adding 1–3 wt % Na+‐MMT or O‐MMT with respect to that of pristine PVC. However, the addition of Na+‐MMT or O‐MMT should be kept as not more than 3 wt % to optimize the mechanical properties and the processing stability of the rigid PVC/MMT nanocomposites. SEM micrographs of the fractured surfaces of the rigid PVC/Na+‐MMT and PVC/O‐MMT nanocomposites both before and after tensile tests were also illustrated and compared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2145–2154, 2006  相似文献   

11.
Poly(styrene‐co‐butyl acrylate) copolymers were prepared by free‐radical random copolymerization of styrene and butyl acrylate in emulsion in the presence of 10% of surface‐modified sodium montmorillonite (Na‐MMT). The objective of this work was to evaluate the impact of the clay organic modifier in terms of its chemical structure, its degree of interaction within the clay galleries surface, and its ability to copolymerize with monomers, on the morphology and properties of the final nanocomposite prepared. Na‐MMT was modified using different organic modifiers, namely: sodium 1‐allyloxy‐2‐hydroxypropyl (Cops), 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS), N‐isopropylacrylamide (NIPA), and sodium 11‐methacryloyloxy‐undecan‐1‐yl sulfate (MET), respectively. The morphology and properties of the nanocomposites obtained were found to be dependant on the clay organic modifier. X‐ray diffraction (XRD) and transmission electron microscopy indicated that, nanocomposites at 10% clay loading with Cops‐, NIPA‐, and MET‐modified clays, yielded intercalated to partially exfoliated structures, whereas AMPS‐modified clay gave a nanocomposite with a fully exfoliated structure. All polymer–clay nanocomposites were found to be more thermally stable than neat poly(S‐co‐BA) as were determined by TGA. However, nanocomposites with intercalated structures exhibited greater thermal stability relative to fully exfoliated ones. Furthermore, nanocomposites with exfoliated structures exhibited higher storage moduli (GI) than partially exfoliated once, whereas intercalated structure showed the lowest GI values. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3619–3628, 2008  相似文献   

12.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   

13.
傅强 《高分子科学》2009,(6):843-849
 The bionanocomposites of soy protein isolate (SPI)/montmorillonite (MMT) have been prepared successfully via simple melt mixing, in which MMT was used as nanofiller and glycerol was used as plasticizer. Their structures and properties were characterized with X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), thermogravimetric analysis and tensile testing. XRD、TEM and SEM results indicated that the MMT layers could be easily intercalated by the SPI matrix even by simple melt processing. The exfoliated MMT layers were randomly dispersed in the protein matrix as MMT content was low (less than 5 wt%), an incomplete exfoliation was evident from SEM results, and some primary particles were observed as the MMT content was high (from 5 wt% to 9 wt%). A significant improvement of the mechanical strength and thermal stability of SPI/MMT nanocomposites has been achieved. Our work suggests that simple melt processing is an efficient way to prepare SPI/MMT nanocomposites with exfoliated structure.  相似文献   

14.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with an alkyl ammonium surfactant pretreated montmorillonite (MMT). The thermal stability of the organic MMT powders was measured by thermogravimetric analysis. The decomposition of the surfactant on the MMT occurred from 200 to 500 °C. The low onset decomposition temperature of the organic MMT is one shortcoming when it is used to prepare polymer nanocomposites at high melt‐compounding temperatures. To provide greater property enhancement and better thermal stability of the polymer/MMT nanocomposites, it is necessary to develop MMT modified with more thermally stable surfactants. The dispersion and spatial distribution of the organic MMT layers in the nylon‐66 matrix were characterized by X‐ray diffraction. The organic MMT layers were exfoliated but not randomly dispersed in the nylon‐66 matrix. A model was proposed to describe the spatial distribution of the organic MMT layers in an injection‐molded rectangular bar of nylon‐66/organic MMT nanocomposites. Most organic MMT layers were oriented in the injection‐molding direction. Layers near the four surfaces of the bar were parallel to their corresponding surfaces; whereas those in the bulk differed from the near‐surface layers and rotated themselves about the injection‐molding direction. The influence of the spatial distribution of the organic MMT on crystallization of nylon‐66 was also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1234–1243, 2003  相似文献   

15.
We synthesized organosoluble, thermoplastic elastomer/clay nanocomposites by making a jelly like solution of ethylene vinyl acetate containing 28% vinyl acetate (EVA‐28) and blending it with organomodified montmorillonite. Sodium montmorillonite (Na+‐MMT) was made organophilic by the intercalation of dodecyl ammonium ions. X‐ray diffraction patterns of Na+‐MMT and its corresponding organomodified dodecyl ammonium ion intercalated montmorillonite (12Me‐MMT) showed an increase in the interlayer spacing from 11.94 to 15.78 Å. However, X‐ray diffraction patterns of the thermoplastic elastomer and its hybrids with organomodified clay contents up to 6 wt % exhibited the disappearance of basal reflection peaks within an angle range of 3–10°, supporting the formation of a delaminated configuration. A hybrid containing 8 wt % 12Me‐MMT revealed a small hump within an angle range of 5–6° because of the aggregation of silicate layers in the EVA‐28 matrix. A transmission electron microscopy image of the same hybrid showed 3–5‐nm 12Me‐MMT particles dispersed in the thermoplastic elastomer matrix; that is, it led to the formation of nanocomposites or molecular‐level composites with a delaminated configuration. The formation of nanocomposites was reflected through the unexpected improvement of thermal and mechanical properties; for example, the tensile strength of a nanocomposite containing only 4 wt % organophilic clay was doubled in comparison with that of pure EVA‐28, and the thermal stability of the same nanocomposite was higher by about 34 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2065–2072, 2002  相似文献   

16.
Covalently bonded layered silicated/polystyrene nanocomposites were synthesized via atom transfer radical polymerization in the presence of initiator‐modified layered silicate. The resulting nanocomposites had an intercalated and partially exfoliated structure, as confirmed by X‐ray diffraction and transmission electron microscopy. The thermal properties of the nanocomposites improved substantially over those of neat polystyrene. In particular, a maximum increase of 35.5 °C in the degradation temperature was displayed by these nanocomposites. Additionally, the surface elastic modulus and hardness of these nanocomposites were more than double those of pure polystyrene. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 534–542, 2005  相似文献   

17.
The feasibility of constructing polymer/clay nanocomposites with polypeptides as the matrix material is shown. Cationic poly‐L‐lysine · HBr (PLL) was reinforced by sodium montmorillonite clay. The PLL/clay nanocomposites were made via the solution‐intercalation film‐casting technique. X‐ray diffraction and transmission electron microscopy data indicated that montmorillonite layers intercalated with PLL chains coexist with exfoliated layers over a wide range of relative PLL/clay compositions. Differential scanning calorimetry suggests that the presence of clay suppresses crystal formation in PLL relative to the neat polypeptide and slightly decreases the PLL melting temperature. Despite lower crystallinity, dynamic mechanical analysis revealed a significant increase in the storage modulus of PLL with an increase in clay loading producing storage modulus magnitudes on par with traditional engineering thermoplastics. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2579–2586, 2002  相似文献   

18.
The poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposite was prepared by emulsifier-free emulsion technique and its structure and properties were characterized with infra red, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, and cone calorimetry. The highly exfoliated MMT layers with dimension 1-2 nm in thickness were randomly dispersed in the polymer matrix containing MMT lower than 5% w/v, whereas the intercalated structure was predominant with MMT content higher than 5% w/v. Consequently, the fine dispersion of the MMT and the strong interactions between PMMA and MMT created significant improvement of the thermo-stability and fire retardancy of the nanocomposite. The combustion behavior has been evaluated using oxygen consumption cone calorimetry. In addition, a scheme was proposed to describe fire retardancy of PMMA and MMT as well as the correlation between the interaction and structure in polymer/clay systems. The biodegradability of the nanocomposite fire-retardant was tested for its better commercialization.  相似文献   

19.
A Brabender mixer was used to deagglomerate and disperse organomodified montmorillonite Cloisite® 30B (3 wt %) in polylactide (PLA) matrix to obtain nanocomposite systems. The influence of compounding conditions such as blending time (6.5, 10, 20, and 30 min) and compression molding on the nanostructure of nanocomposites was investigated. Molecular weight changes of the PLA matrices induced by melt compounding were determined. Good rheological behavior of the PLA during melt blending with Cloisite® 30B was observed. Prolongation of the blending process improved homogenization of the nanocomposites with the formation of more intercalated and exfoliated structures as revealed by transmission electron microscopy (TEM) and X‐ray analysis. Some orientation of the silicate nanoplatelets induced by compression molding of the nanocomposites was revealed by TEM. It was found that an increase of dispersion degree of the silicate layers modified pronouncedly the physical properties of nanocomposites through an increase of thermal stability as revealed by the thermogravimetric analysis, a decrease of crystallizability of the PLA matrix during melt‐crystallization and upon heating from the glassy, amorphous state. Rheological properties of the nanocomposites determined during dynamic frequency sweep appeared to be very sensitive to the nanostructure evolution. Moreover, the scanning electron microscopy and light microscopy investigations showed the presence of the micron‐size inorganic contaminations in the nanocomposites originating from organoclay Cloisite® 30B. These inclusions were resistive to deagglomeration during melt processing. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3392–3405, 2006  相似文献   

20.
A new class of polybenzoxazine/montmorillonite (PBz/MMT) nanocomposites has been prepared by the in situ polymerization of the typical fluid benzoxazine monomer, 3‐pentyl‐5‐ol‐3,4‐dihydro‐1,3‐benzoxazine, with intercalated benzoxazine MMT clay. A pyridine‐substituted benzoxazine was first synthesized and quaternized by 11‐bromo‐1‐undecanol and then used for ion exchange reaction with sodium ions in MMT to obtain intercalated benzoxazine clay. Finally, this organomodified clay was dispersed in the fluid benzoxazine monomers at different loading degrees to conduct the in situ thermal ring‐opening polymerization. Polymerization through the interlayer galleries of the clay led to the PBz/MMT nanocomposite formation. The morphologies of the nanocomposites were investigated by both X‐ray diffraction and transmission electron microscopic techniques, which suggested the partially exfoliated/intercalated structures in the PBz matrix. Results of thermogravimetric analysis confirmed that the thermal stability and char yield of PBz nanocomposites increased with the increase of clay content. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号