首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogenolysis of dimethyl disulfide in the presence of Ni,Mo and Co,Mo bimetallic sulfide catalysts was studied at atmospheric pressure and T = 160–400°C. At T ≤ 200°C, dimethyl disulfide undergoes hydrogenolysis at the S-S bond, yielding methanethiol in 95–100% yield. The selectivity of the reaction decreases with increasing residence time and temperature due to methanethiol undergoing condensation to dimethyl disulfide and hydrogenolysis at the C-S bond to yield methane and hydrogen sulfide. The specific activity of the Co,Mo/Al2O3 catalyst in hydrogenolysis at the S-S and C-S bonds is equal to or lower than the total activity of the monometallic catalysts. The Ni,Mo/Al2O3 catalyst is twice as active as the Ni/Al2O3 + Mo/Al2O3 or the cobalt-molybdenum bimetallic catalyst.  相似文献   

2.
The hydrogenolysis of dimethyl disulfide to methanethiol at T = 180–260°C and atmospheric pressure in the presence of supported cobalt sulfide catalysts has been studied. Cobalt sulfide on aluminum oxide exhibits a higher activity than that on a carbon support or silicon dioxide. The maximum reaction rate per gram of a catalyst is observed on an 8% Co/Al2O3 catalyst. At temperatures of up to 200°C and conversions up to 90%, methanethiol is formed with nearly 100% selectivity regardless of the cobalt content, whereas the selectivity for methanethiol under more severe conditions decreases because of its condensation to dimethyl sulfide.  相似文献   

3.
采用密度泛函理论研究了ZrO2负载的Ru基、Rh基以及Re改性的Rh基、Ir基催化剂上甘油氢解生成1,2-丙二醇和1,3-丙二醇的热力学过程, 重点考察了ReOx调变催化剂活性和选择性的作用机制. 结果表明, Ru/ZrO2和Rh/ZrO2催化剂上甘油分解经由脱水-加氢反应途径, 1,2-丙二醇的生成是热力学有利过程, 其中Ru基催化剂活性更高. 在Re修饰的Rh基和Ir基催化剂上, 反应遵循直接氢解机理, 其中金属表面解离的氢原子进攻ReOx团簇上与醇盐紧邻的C-O键是催化甘油转化为丙二醇最核心的步骤. ReOx-Rh/ZrO2催化剂上1,2-丙二醇为主要产物, 并伴随1,3-丙二醇的生成, ReOx的修饰则显著提高了Ir/ZrO2催化剂上1,3-丙二醇选择性. 与单金属催化剂上发生的间接氢解机理相比, 修饰催化剂上1,3-丙二醇选择性的提高可主要归因于Rh(Ir)-Re协同催化的直接氢解反应过程, 其中羟基化铼官能团有利于末端醇盐中间体的生成. ReOx-Ir/ZrO2催化剂上较大的Ir-Re团簇使得末端金属醇盐的立体优选性比次级醇盐更为突出, 从而具有最高的1,3-丙二醇选择性.  相似文献   

4.
The activity of Pt, Rh, and Ni catalysts deposited on Al2O3 and tungsten-containing catalysts 20% H4SiW12O40/ZrO2 and 15% WOx/ZrO2 in the hydrogenation of toluene and toluene ring opening and isomerization in the presence of hydrogen was studied. Under experimental conditions (160–360°C, 2.2 MPa), the main reactions on Rh/Al2O3 were the hydrogenation of toluene into methylcyclohexane, hydrogenolysis into isoheptanes, and hydrocracking into alkanes C1–C6. On Pt, Rh, and Ni catalysts on carriers with strong acid properties, the isomerization of the six-membered into five-membered ring followed by hydrogenolysis (hydrocracking) of alkylcyclopentanes occurred. The yield of heptane isomers, however, did not exceed 13%. The activity of Pt and Rh catalysts on a high-acidity carrier (WOx/ZrO2) in hydrocracking was much higher than that of catalysts based on deposited heteropoly acid. The yields of hydrogenolysis (hydrocracking) products on Ni/WOx/ZrO2 were much lower than on Pt(Rh)/WOx/ZrO2. The highest yield of ring opening products (isoheptanes and n-heptane) was obtained with layered loading of two catalysts; it reached 58 wt % at 300°C and a 2.2 MPa pressure, which was 4.5 and 2 times higher than the yield obtained on Ni-Pt/WOx/ZrO2 and 2% Rh/Al2O3 catalysts. Hydrodemethylation was not the main direction of toluene transformations on any of the catalysts studied.  相似文献   

5.
The products distribution of glycerol hydrogenolysis over supported Co catalysts was evaluated in a liquid phase system. The effects of support type, temperature, pressure and reaction time on the conversion of glycerol as well as yield of desired products were investigated. The preliminary results indicated that various added compounds were generated in the presence of supported Co catalysts. The type of support and the reaction temperature, pressure and time significantly affected either the glycerol conversion or the product yield. The acidity of catalyst played a more important role in the glycerol hydrogenolysis over supported Co catalysts than the specific surface and pore volume. Among the utilized supported Co catalysts, Co/γ-Al2O3 exhibited the highest acrolein yield of about 31.1% at 70.5% conversion at 200°C, 8 MPa H2 pressure and 6 h reaction time.  相似文献   

6.
The effect of the gas‐phase chemical potential on surface chemistry and reactivity of molybdenum carbide has been investigated in catalytic reactions of propane in oxidizing and reducing reactant mixtures by adding H2, O2, H2O, and CO2 to a C3H8/N2 feed. The balance between surface oxidation state, phase stability, carbon deposition, and the complex reaction network involving dehydrogenation reactions, hydrogenolysis, metathesis, water‐gas shift reaction, hydrogenation, and steam reforming is discussed. Raman spectroscopy and a surface‐sensitive study by means of in situ X‐ray photoelectron spectroscopy evidence that the dynamic formation of surface carbon species under a reducing atmosphere strongly shifts the product spectrum to the C3‐alkene at the expense of hydrogenolysis products. A similar response of selectivity, which is accompanied by a boost of activity, is observed by tuning the oxidation state of Mo in the presence of mild oxidants, such as H2O and CO2, in the feed as well as by V doping. The results obtained allow us to draw a picture of the active catalyst surface and to propose a structure–activity correlation as a map for catalyst optimization.  相似文献   

7.
负载型钌催化剂催化山梨醇氢解制乙二醇(英)   总被引:1,自引:0,他引:1  
Supported Ru catalysts were prepared by wet impregnation to evaluate the role of different oxide supports(Al2O3,SiO2,TiO2,ZrO2) in sorbitol hydrogenolysis to glycols.X-ray diffraction,transmission electron microscopy,hydrogen chemisorption,X-ray photoelectron spectroscopy,and NH3temperature-programmed desorption were used to characterize the catalysts,which were active in the hydrogenolysis of sorbitol.The support affected both the physicochemical properties and catalytic behavior of the supported Ru particles.The characterization results revealed that the Ru/Al2O3catalyst has a high surface acidity,partially oxidized Ru species on the surface,and a higher surface Ru/Al atomic ratio,which gave it the highest selectivity and yield to glycols.  相似文献   

8.
为提高太阳能转化效率, 高效响应可见光的光催化剂的研究十分必要. 本研究以硫化镉、氯化钯、醋酸镍和硫脲为原料, 利用水热法制备了NiS-PdS/CdS复合光催化剂. 通过X射线衍射(XRD)、紫外-可见光漫反射光谱(DRS)、透射电子显微镜(TEM)和光致发光(PL)光谱等手段对光催化剂进行了表征, 并在乳酸牺牲剂中对光解水制氢活性进行了测试. 结果表明: 助催化剂NiS 和PdS 能较好地分布在CdS 表面上, 形成共负载的NiS-PdS/CdS 光催化剂, 其可见光下的活性比CdS明显增强, 当NiS 和PdS 负载量分别在1.5%和0.41%(w)时, NiS-PdS/CdS获得最好活性, 最大产氢量达到6556 μmol·h-1, 是CdS活性的7倍, 是NiS/CdS的近3倍, 测得在λ=420 nm时的表观量子效率为47.5%. 助催化剂NiS 和PdS分别起到传递光生电子和光生空穴的作用,两者共负载相比于单独负载, 能使光生载流子的迁移和分离效率更高, 因此提高了光催化产氢活性.  相似文献   

9.
We prepared Pd catalysts supported on various metal oxides, viz. γ-Al2O3, α-Al2O3, SiO2–Al2O3, SiO2, CeO2 and TiO2 by an incipient wetness method and applied them to propane combustion. Several techniques: N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) were employed to characterize the catalysts. Pd/SiO2–Al2O3 showed the least catalytic activity at high temperatures among Pd catalysts supported on irreducible metal oxides, viz. SiO2, Al2O3 and SiO2–Al2O3. Pd/γ-Al2O3 was much superior for this reaction to Pd/α-Al2O3. The Pd catalyst supported on reducible metal oxides (CeO2 and TiO2) with a less specific surface area showed the higher catalytic activity compared with that supported on reducible metal oxides with a higher specific surface area, even though the former had a less Pd dispersion than the latter. In the case of Pd/SiO2–Al2O3, the initially reduced Pd catalyst was superior to the fully oxidized one. The oxidation of metallic Pd occurred in the presence of O2 with increasing reaction temperature, which resulted in the change in the catalytic activity.  相似文献   

10.
The activities of monometallic Pt-, Ru-, and Rh-containing catalysts supported on Al2O3, Al2O3—F, SiO2, WO3/ZrO2, and La2Î3/ZrO2, in cyclohexane ring opening to form n-hexane were studied. The most active catalyst is Rh/Al2O3. Cyclohexane hydrogenolysis to n-hexane also occurs over the Pt/Al;>2O3 and Pt/La2Î3/ZrO2 catalysts. Ring opening over the Ru catalysts proceeds at significantly lower temperatures (210—230 °C) than over the Pt and Rh catalysts (350—400 °C), but the ruthenium systems are less selective for n-hexane formation than Rh/Al2O3 catalysts. The effects of acid-basic properties of the support and the reaction conditions on the activities of the catalytic systems in cyclohexane ring opening was studied.  相似文献   

11.
The silica‐supported azazirconacyclopropane ?SiOZr(HNMe2)(η2‐NMeCH2)(NMe2) ( 1 ) leads exclusively under hydrogenolysis conditions (H2, 150 °C) to the single‐site monopodal monohydride silica‐supported zirconium species ?SiOZr(HNMe2)(NMe2)2H ( 2 ). Reactivity studies by contacting compound 2 with ethylene, hydrogen/ethylene, propene, or hydrogen/propene, at a temperature of 200 °C revealed alkene hydrogenation.  相似文献   

12.
We have investigated the photoelectrochemical behavior of poly(3-methylthiophene) supported on nanostructured n-TiO2 in a solid-state photoelectrochemical device. As electrolyte we employed the elastomer poly(epichlorohydrin-co-ethylene oxide) filled with NaI/I2. Under polychromatic light irradiation (60 mW cm−2) the device exhibits an open circuit voltage, a short-circuit current and fill factor of 10 μA cm−2, 0.048 V and 0.29, respectively. The overall efficiency of the cell is 2.3×10−2%.  相似文献   

13.
The catalytic performance of ReOx‐modified Ir metal catalyst in the hydrogenolysis of C–O bonds is strongly dependent on the choice of solvent. The acidic property of the Re species becomes obvious in the alkane solvent, and the hydrogenolysis reaction proceeds mainly by acid‐catalyzed dehydration and the subsequent metal‐catalyzed hydrogenation. The acidic property of the Re species is weakened in water; however, the hydrogenolysis reaction proceeds in water via a direct mechanism involving SN2‐like attack of a hydride species at the interface between Ir and ReOx on the adsorbed Re alkoxide species. This mechanism enabled the selective dissociation of the C–O bond neighboring the CH2OH group.  相似文献   

14.
The hydrogenolysis of tetrahydrofuran (THF) on TiO2, SiO2 and Al2O3 supported Pt catalysts has been investigated in the gas phase at 423–623 K in a pulse reactor. The main reactions are hydrodeoxygenation to butane and decarbonylation to propane. The supports had a marked effect on the selectivity of conversion. On the Pt−TiO2 catalyst mainly butane was formed while on the other two catalysts propane formation was dominant. Based on the results of earlier studies on oxacycloalkanes as well as on data in the literature and the experimental results presented here, a new reaction scheme is outlined for the interpretation of the chemical processes discussed. Part XV.: J. Mol. Catal. (in press)  相似文献   

15.
Kinetics of the hydroprocessing of anisole, a compound representative of lignin‐derived bio‐oils, catalyzed by a commercial sulfided CoMo/Al2O3, was determined at 8–20 bar pressure and 573–673 K with a once‐through flow reactor. The catalyst was sulfided in an atmosphere of H2 + H2S prior to the measurement of its performance. Selectivity‐conversion data were used as a basis for determining an approximate, partially quantified reaction network showing that hydrodeoxygenation (HDO), hydrogenolysis, and alkylation reactions take place simultaneously. The data indicate that these reactions can be stopped at the point where HDO is virtually completed and hydrogenation reactions (and thus H2 consumption) are minimized. Phenol was the major product of the reactions, with direct deoxygenation of anisole to give benzene being kinetically almost insignificant under our conditions. We infer that the scission of the Cmethyl–O bond is more facile than the scission of the Caromatic–O bond, so that the HDO of anisole likely proceeds substantially through the reactive intermediate phenol to give transalkylation products such as 2‐methylphenol. The data determine rates of formation of the major primary products. The data show that if oxygen removal is the main processing goal, higher temperatures and lower pressures are favored.  相似文献   

16.
Hydrogenolysis of glycerol to 1,2-propanediol and 1,3-propanediol has significant scientific importance and commercial interest due to the huge surplus of glycerol and the various application of propanediols. A series of supported Ag–Cu catalysts synthesized by impregnation method were studied for hydrogenolysis of glycerol to propanediols. The catalysts were characterized by H2-TPR, NH3-TPD, XRD, BET, N2O chemisorption, TG, ICP and SEM. It was observed that the loading of 5% Ag–Cu-based catalysts facilitated the reduction, surface acidity and dispersion of the Cu particles, which improved the conversion of glycerol and promoted the generation of propanediols. It was also found that when loading Ag and Cu simultaneously on Al2O3, the catalyst had a better performance for the reaction because of the higher acidity, dispersion and surface area of the Cu species on the catalyst surface. In addition, effects of metal concentrations, metal impregnation sequence, reaction temperature, reaction pressure, reaction time, solvent and pH value of the solution on glycerol hydrogenolysis together with the recyclability of catalyst were investigated in detail. The optimal 5Ag–15Cu/Al2O3 achieved 66.4% glycerol conversion with 68.2% 1,2-propanediol and 3.1% 1,3-propanediol selectivity at 200 °C under 3.5 MPa in ethanol for 8 h.  相似文献   

17.
Data on ethylene polymerization on homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl Fe(II) complexes activated by trialkylaluminums are considered (activity, the molecular-weight characteristics of polymers, the number of active sites, and the propagation rate constants). Unlike homogeneous systems, the supported catalysts prepared with the use of various carriers (SiO2, Al2O3, and MgCl2) exhibited high stability and activity at 70–80°C and produced high-molecular-weight polyethylene with a broad molecular-weight distribution (MWD). The molecular weights and MWDs of polymers and the propagation rate constant depended on the nature of the carrier only slightly. The reasons for an unusual effect of an increase in the activity of the supported catalysts in ethylene polymerization in the presence of hydrogen are discussed.  相似文献   

18.
Investigations on Metal Catalysts. XXVIII. Activity and Selectivity of Supported Nickel Catalysts Titania and alumina supported nickel catalysts (with 1 and 10 wt.-% Ni, resp.) have been tested in ethane hydrogenolysis and conversion of cyclohexane. Titania supported nickel and nickel on high surface aluminas are characterized by small hydrogenolysis activities and high dehydrogenation selectivities. The behaviour of the Ni/Al2O3 catalysts is discussed in terms of an interaction between small nickel crystallites and unreduced nickel. In the case of the Ni/TiO2 catalysts the interpretation is based on the partial poisoning of the nickel surface by titanium cations.  相似文献   

19.
由NH4Y分子筛制备了HY分子筛,运用N2吸附、NH3-TPD和Py-FTIR等手段表征HY分子筛的物化性能;采用智能重量分析仪(IGA)方法研究了甲基噻吩(2-甲基噻吩、3-甲基噻吩)在HY分子筛上的吸附-脱附行为;采用程序升温脱附-质谱(TPD-MS)联用手段研究了甲基噻吩在HY分子筛上的转化行为。结果表明,在200 ℃下 2-甲基噻吩和3-甲基噻吩在HY分子筛中的强B酸上发生强化学吸附作用,与B酸结合后生成了甲基噻吩的碳正离子结构进而发生了歧化反应、脱烷基反应以及裂化反应;与2-甲基噻吩不同的是,3-甲基噻吩与HY通过一定的氢转移反应生成了3-甲基四氢噻吩,且200 ℃吸附条件下3-甲基噻吩比2-甲基噻吩更容易发生裂化反应。  相似文献   

20.
Bimetallic iron–ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL‐SO3H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff–Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL‐SO3H materials opens a general approach to multifunctional catalytic systems (MM′@SILP+IL‐func).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号