首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
The adsorption of Pb(II) ions from aqueous solutions by chitosan flakes and beads was studied. The chitosan beads were prepared by casting an acidic chitosan solution into alkaline solution. Experiments were carried out as a function of pH, agitation period and initial concentration of Pb2+ ions. The uptake of Pb2+ ions from aqueous solution was determined from changes in concentration as measured by atomic absorption spectroscopy. The maximum uptake of Pb2+ ions on chitosan beads was greater than that on chitosan flakes. Adsorption isothermal data could be interpreted by the Langmuir equation. The experimental data of the adsorption equilibrium from Pb2+ ion solutions correlated well with the Langmuir isotherm equation. SEM analyses were also conducted for visual examination of the chitosan flakes and beads. Physical properties including surface area and average pore diameter were characterized by N2 adsorption experiment.  相似文献   

2.
3.
This study introduces a sensitive and simple method for selective adsorption of hexavalent chromium, Cr(VI), from water samples prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The method utilized activated carbon modified with tris(hydroxymethyl)aminomethane (AC-TRIS) as an adsorbent. Surface properties of the new chemically modified AC-TRIS phase were confirmed by Fourier transform infrared (FTIR) spectroscopy. Seven metal ions, including Co(II), Cu(II), Ni(II), Pb(II), Cr(III), Cr(VI), and Fe(III) were evaluated and determined at different pH values (1.0–8.0), except for Fe(III) at pH values (1.0–4.0). Based on the results of the effect of pH on adsorption of these metal ions on AC-TRIS, Cr(VI) was selected for the study of other parameters controlling its maximum uptake on AC-TRIS under batch conditions and at the optimum pH value 1.0. The maximum static adsorption capacity of Cr(VI) onto the AC-TRIS was found to be 43.30 mg g?1 at this pH and after 1 hour contact time. The adsorption data of Cr(VI) were modeled using both Langmuir and Freundlich classical adsorption isotherms. Results demonstrated that the adsorption of Cr(VI) onto AC-TRIS followed a pseudo second-order kinetic model. In addition, the efficiency of this methodology was confirmed by applying it to real environmental water samples.  相似文献   

4.
The cross-linked chitosan (CS) gels synthesized by using glutaraldehyde (GLA), epichlorohydrin (EC), and ethylene glycol diglycidyl ether (EGDE) as cross-linkers respectively were used to investigate the adsorption of U(VI) ions in an aqueous solution. The pure chitosan (PCS) and the cross-linked chitosan gels were characterized by FTIR and SEM analysis. The kinetic, thermodynamic adsorption and adsorption isotherms of U(VI) ions onto unmodified and modified cross-linked chitosan were studied in a batch adsorption experiments. The effect of pH, contact time and temperature on the adsorption capacity were also carried out. At the optimum pH, the maximum adsorbed amount of PCS, GLACS, ECCS and EGDECS were 483.05, 147.05, 344.83 and 67.56 mg/g, respectively. The uranium (VI) adsorption process of PCS and ECCS followed better with pseudo-second-order kinetic model, while GLACS and EGDECS followed pseudo-first-order kinetic model well. The results obtained from the equilibrium isotherms adsorption studied of U(VI) ions were analyzed in two adsorption models, namely, Langmuir and Freundlich isothms models, the results showed that the Langmuir isotherm had better conformity to the equilibrium data. The thermodynamic parameters such as enthalpy (ΔHo), entropy (ΔSo), and Gibbs free energy (ΔGo) showed that the adsorption process was both spontaneous and endothermic.  相似文献   

5.
Adsorption of Cr(VI) using activated neem leaves: kinetic studies   总被引:1,自引:0,他引:1  
In the present study, adsorbent is prepared from neem leaves and used for Cr(VI) removal from aqueous solutions. Neem leaves are activated by giving heat treatment and with the use of concentrated hydrochloric acid (36.5 wt%). The activated neem leaves are further treated with 100 mmol of copper solution. Batch adsorption studies demonstrate that the adsorbent prepared from neem leaves has a significant capacity for adsorption of Cr(VI) from aqueous solution. The parameters investigated in this study include pH, contact time, initial Cr(VI) concentration and adsorbent dosage. The adsorption of Cr(VI) is found to be maximum (99%) at low values of pH in the range of 1-3. A small amount of the neem leaves adsorbent (10 g/l) could remove as much as 99% of Cr(VI) from a solution of initial concentration 50 mg/l. The adsorption process of Cr(VI) is tested with Langmuir isotherm model. Application of the Langmuir isotherm to the system yielded maximum adsorption capacity of 62.97 mg/g. The dimensionless equilibrium parameter, R L, signifies a favorable adsorption of Cr(VI) on neem leaves adsorbent and is found to be between 0.0155 and 0.888 (0<R L<1). The adsorption process follows second order kinetics and the corresponding rate constant is found to be 0.00137 g/(mg) (min).  相似文献   

6.
Poly(methacrylic acid) brush grafted crosslinked-chitosan (chitosan-g-poly(MAA)) beads were prepared in two sequential steps: in the first step, chitosan beads were prepared by phase-inversion technique and then were crosslinked with epichlorohydrin under alkaline condition; in the second step, the graft copolymerization of methacrylic acid onto the chitosan beads was initiated by ammonium persulfate (APS) under nitrogen atmosphere. The chitosan-g-poly(MAA) beads were first used as an ion exchange support for adsorption of lysozyme (LYZ) from aqueous solution. The influence of pH, equilibrium time, ionic strength and initial LYZ concentration on the adsorption capacity of the chitosan-g-poly(MAA) ion-exchange beads has been investigated in a batch system. Maximum LYZ adsorption onto chitosan-g-poly(MAA) beads was found to be 65.7 mg/g at pH 6.0. The experimental equilibrium data obtained LYZ adsorption onto chitosan-g-poly(MAA) ion-exchange beads fitted well to the Langmuir isotherm model. Kinetics parameters of this adsorption system were also analyzed by using the equilibrium experimental data. The result of kinetic analyzed for LYZ adsorption onto ion-exchange beads showed that the second order rate equation was favourable. Finally, the chitosan-g-poly(MAA) ion-exchange beads were used for the purification of LYZ from egg white in batch system and the purity of the eluted LYZ from ion-exchange chitosan-g-poly(MAA) beads was determined as 94% by HPLC from single step purification.  相似文献   

7.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

8.
The adsorption of Cu(II) ions onto the chitosan derived Schiff bases obtained from the condensation of chitosan with salicyaldehyde (polymer I), 2,4-dihydroxybenzaldehyde (polymer II) and with 4-(diethylamino) salicyaldehyde (polymer III) in aqueous solutions was investigated. Batch adsorption experiments were carried out as a function of contact time, pH, and polymer mass. The amount of metal-ion uptake of the polymers was determined by using atomic absorption spectrometry (AAS) and the highest Cu(II) ions uptake was achieved at pH 7.0 and by using sodium perchlorate as an ionic strength adjuster for polymers I, II, and III. The isothermal behavior and the kinetics of adsorption of Cu(II) ions on these polymers with respect to the initial mass of the polymer and temperature were also investigated; adsorption isothermal equilibrium data could be clearly explained by the Langmuir equation. The experimental data of the adsorption equilibrium from Cu(II) solution correlates well with the Langmuir isotherm equation.  相似文献   

9.
1. INTRODUCTION Chitosan is a hydrolyzed derivative of chitin and belongs to a family of linear unbranched polysaccharides which contain large amounts of 1,4-linked-2-amino-2-deoxy-β-D-glucan residues. The presence of free amine groups in chitosan enhances the solubility and reactivity of this polymer. Interest in modifying chitosan by using glutaraldehyde has recently increased. The derivatized polymers have been employed for many applications [1~2], including protein immobilization…  相似文献   

10.
The biosorption of rhodamine-B from aqueous solution using crosslinked alginate beads was studied by contact method at fixed pH ?3 and room temperature (28 ± 0.2°C). Both the Freundlich and Langmuir isotherm models could describe the adsorption equilibrium of the rhodamine-B onto crosslinked alginate beads. The influence of various experimental parameters such as pH, temperature, effect of concentration and time were evaluated. It was observed that the adsorption capacity of rhodamine-B onto alginate beads decreased with increase in pH and temperature above room temperature.  相似文献   

11.
Speciation and separation of chromium (VI) and chromium (III) from aqueous solutions were investigated using amino-propyl functionalised mesoporous silica (AP-MCM-41) as an adsorbent. The as-synthesised adsorbent was produced following a simple synthesis method at room temperature prior to template removal using microwave digestion. The maximum adsorption capacity at 111.1mg/g was calculated according to the Langmuir isotherm model, suggesting a 1:1 monolayer adsorption mechanism. Moreover, AP is a simple chelate, yet it can extract Cr (VI) exclusively from solutions containing other mixed metal ions simply by tuning the solution pH. Recovery of Cr (VI) from loaded sorbents is equally easy to perform with 100% extraction efficiencies allowing reuse of the sorbent and recovery of Cr (VI) from aqueous solutions containing a complex mixture of ions. The material would find use in environmental remediation applications, as a selective adsorbent of Cr (VI) or even as a solid-phase extraction stationary phase to remove and pre-concentrate Cr (VI) from aqueous solutions; this study demonstrates enrichment factors of 100 although higher levels are also possible.  相似文献   

12.
The batch removal of Cr(VI) ions from aqueous solution using binary composite microspheres of chitosan and nanoparticles of iron oxide under different conditions has been investigated in this study. The influences of initial chromium concentration, contact time, pH, temperature, and solid-liquid ratio have been reported. The adsorption data was fitted well in the Langmuir and Freundlich models and various static parameters were calculated. The mechanism of adsorption was studied by Fourier Transform Infrared spectroscopy (FTIR).  相似文献   

13.
The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out as function of pH,temperature,agitation rate and concentration of Fe(Ⅲ)ions.The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and isotherm constants were determined.The Langmuir model agrees very well with experimental data.The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated.The dynamical data fit well with the second-order kinetic model.The pseudo second-order kinetic model was indicated with the activation energy of 19.61 and 7.98 kJ/mol for KCTS and HKCTS,respectively.It is suggested that the overall rate of Fe(Ⅲ)adsorption is likely to be controlled by the chemical process.Results also showed that novel chitosan derivatives(KCTS and HKCTS)were favorable adsorbents.  相似文献   

14.
Chitosan tripolyphosphate (CTPP) beads were prepared at two different cross-linking densities and adsorption of Cr(III) onto it were studied as a function of different operational parameters such as solution pH, equilibration time and initial Cr(III) ion concentration. Higher cross-linked beads were found to have more adsorption capacity at all the experimental pH employed (pH = 3–5), whereas adsorption capacity is found to increase with increase in pH. Adsorption data were analyzed using Langmuir and Freundlich isotherm models. Langmuir model is found be more suitable to explain the experimental results with a monolayer adsorption capacity of 469.5 mg/g. Among the kinetic models used, pseudo-second order kinetic model could best describe the adsorption process. Competition experiments done in presence of Na(I), Mg(II), Ca(II), Al(III) and Fe(III) revealed that, except in the case of Al(III), adsorption of Cr(III) is not significantly affected by the presence of foreign cations. NaCl is found to be a suitable leaching agent for the desorption of adsorbed Cr(III) from CTPP beads. FTIR spectroscopic investigations confirmed that phosphate groups are the principal binding site responsible for the sorption of Cr(III) onto CTPP beads.  相似文献   

15.
In this article,a spherical chitosan gel crosslinked by epichlorohydrin was prepared.It was then loaded with copper ions to produce a metal chelate affinity adsorbent for protein.The uptake of bovine serum albumin(BSA)by the affinity adsorbent was investigated.and the adsorption capacity for BSA as high as 40mg/g-wet beads was observed.The adsorption equilibrium data was well correlated by the Langmuir equation.The adsorption was considerably affected by pH.In additio.The amount of BSA adsorbed onto the beads decreased with the increasing of aqueous phase ionic strength,so adsorbed BAS can be desorbed by adjusting pH orionic strength of the solution.  相似文献   

16.
水溶液中六价铬在碳纳米管上的吸附   总被引:6,自引:0,他引:6  
裘凯栋  黎维彬 《物理化学学报》2006,22(12):1542-1546
针对用碳纳米管对水溶液中六价铬的吸附净化进行了研究, 考察了溶液浓度、溶液pH值、共存的三价铬离子等因素对吸附行为的影响. 实验结果表明, 碳纳米管在室温下对于六价铬的吸附量随着平衡浓度的增大而升高, 在铬浓度为493.557 mg•L−1时碳纳米管吸附量达到最大值为532.215 mg•g−1; 六价铬的浓度在300~700 mg•L−1的范围内, 碳纳米管对铬的吸附量变化不大;大于700 mg•L−1时, 随着铬的平衡浓度的升高碳纳米管对铬的吸附量降低, 铬浓度为961.074 mg•L−1时, 碳纳米管吸附量降至194.631 mg•g−1. 在pH值为2~7的范围内, 碳纳米管对六价铬的吸附量随着溶液pH值的减小而增大; 而在碱性条件下, pH值对碳纳米管吸附六价铬的影响不大. 溶液中存在三价铬时, 碳纳米管对六价铬的吸附量明显降低, 表明三价铬与六价铬有竞争吸附. 此外, 活性炭的对比吸附实验表明, 在低浓度时, 譬如在六价铬浓度为190 mg•L−1吸附时, 碳纳米管对铬的吸附量约为活性炭的6倍;而在高浓度下, 譬如六价铬浓度为493 mg•L−1时, 碳纳米管对铬的吸附量约为活性炭的2倍.  相似文献   

17.
The biosorption characteristics of cations and anions from aqueous solution using polyethylenimine (PEI) modified aerobic granules were investigated. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis exhibit the presence of PEI on the granule surface. Compared with the raw granule, the modified aerobic granules with PEI showed a significant increase in sorption capacity for both metal ions. The monolayer biosorption capacity of granules for Cu(II) and Cr(VI) ions was found to be 71.239 and 348.125mg/g. The optimum solution pH for adsorption of Cu(II) and Cr(VI) from aqueous solutions was found to be 6 and 5.2, respectively. The biosorption data fitted better with the Redlich-Peterson isotherm model. FTIR showed chemical interactions occurred between the metal ions and the amide groups of PEI on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption.  相似文献   

18.
The ion-imprinted magnetic chitosan resins (IMCR) prepared using U(VI) as a template and glutaraldehyde as a cross-linker showed higher adsorption capacity and selectivity for the U(VI) ions compared with the non-imprinted magnetic chitosan resins (NIMCR) without a template. The results showed that the adsorption of U(VI) on the magnetic chitosan resins was affected by the initial pH value, the initial U(VI) concentration, as well as the temperature. Both kinetics and thermodynamic parameters of the adsorption process were estimated. These data indicated an exothermic spontaneous adsorption process that kinetically followed the second-order adsorption process. Equilibrium experiments were fitted in Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherm models to show very good fits with the Langmuir isotherm equation for the monolayer adsorption process. The monolayer adsorption capacity values of 187.26 mg/g for IMCR and 160.77 mg/g for NIMCR were very close to the maximum capacity values obtained at pH 5.0, temperature 298 K, adsorbent dose 50 mg, and contact time 3 h. The selectivity coefficient of uranyl ions and other metal ions on IMCR indicated an overall preference for uranyl ions. Furthermore, the IMCR could be regenerated through the desorption of the U(VI) ions using 0.5 M HNO(3) solution and could be reused to adsorb again.  相似文献   

19.
The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out as function of pH,temperature,agitation rate and concentration of Fe(Ⅲ)ions.The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and isotherm constants were determined.The Langmuir model agrees very well with experimental data.The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated.The dynamical data fit well with the second-order kinetic model.The pseudo second-order kinetic model was indicated with the activation energy of 19.61 and 7.98 KJ/mol for KCTS and HKCTS,respectively.It is suggested that the overall rate of Fe(Ⅲ)adsorption is likely to be controlled by the chemical process.Results also showed that novel chitosan derivatives(KCTS and HKCTS)were favorable adsorbents.  相似文献   

20.
The adsorption behaviors of lanthanum (III) from an aqueous chloride medium, using Chitosan acryloylthiourea (CATU) derivative, were studied using an equilibrium batch technique. Here, the chemical modification of chitosan is of interest because the modification would not change the fundamental skeleton of chitosan, would keep the original physicochemical and biochemical properties, and finally would bring new or improved properties. The optimum pH value was defined to be 5.0 at a temperature of 298?K. Kinetic and isotherm experiments were carried out at the optimum pH. It was enough to reach the adsorption equilibrium at 4 hours and the maximum uptake capacity was 2.1?mmol?g?1 at 25°C. Complexion, ion exchange, and electrostatic interaction were all believed to play a role in lanthanum adsorption on CATU derivative. The equilibrium adsorption data were fitted to a second-order kinetic equation. The Langmuir adsorption isotherm models were used to describe the adsorption process. The proposed method was validated and successfully applied for the determination of lanthanum in certified reference samples and ore sample with satisfactory results. The elution experiment was carried out by 0.05?mol/L CaCl2 as an eluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号