首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   885篇
  免费   13篇
  国内免费   2篇
化学   608篇
晶体学   10篇
力学   27篇
数学   66篇
物理学   189篇
  2023年   5篇
  2020年   14篇
  2019年   10篇
  2018年   5篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   32篇
  2012年   36篇
  2011年   45篇
  2010年   21篇
  2009年   19篇
  2008年   36篇
  2007年   49篇
  2006年   53篇
  2005年   52篇
  2004年   36篇
  2003年   35篇
  2002年   31篇
  2001年   17篇
  2000年   15篇
  1999年   12篇
  1998年   14篇
  1997年   8篇
  1996年   10篇
  1995年   12篇
  1994年   9篇
  1993年   9篇
  1992年   17篇
  1991年   11篇
  1990年   8篇
  1988年   11篇
  1987年   12篇
  1986年   10篇
  1985年   14篇
  1984年   9篇
  1983年   15篇
  1982年   16篇
  1981年   12篇
  1980年   12篇
  1979年   15篇
  1978年   14篇
  1977年   15篇
  1976年   11篇
  1975年   8篇
  1974年   13篇
  1973年   11篇
  1972年   5篇
  1937年   4篇
  1887年   4篇
排序方式: 共有900条查询结果,搜索用时 15 毫秒
1.
Self-assembled monolayers (SAMs) based on oligopeptides have garnered immense interest for a wide variety of innovative biomedical and electronic applications. However, to exploit their full potential, it is necessary to understand and control the surface chemistry of oligopeptides. Herein, we report on how different electrical potentials affect the adsorption kinetics, stability and surface coverage of charged oligopeptide SAMs on gold surfaces. Kinetic analysis using electrochemical surface plasmon resonance (e-SPR) reveals a slower oligopeptide adsorption rate at more positive or negative electrical potentials. Additional analysis of the potential-assisted formed SAMs by X-ray photoelectron spectroscopy demonstrates that an applied electrical potential has minimal effect on the packing density. These findings not only reveal that charged oligopeptides exhibit a distinct potential-assisted assembly behaviour but that an electrical potential offers another degree of freedom in controlling their adsorption rate.  相似文献   
2.
Prion-like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau–HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3-O-sulfation (3-O-S) of HS significantly enhances tau binding. In Hs3st1−/− (HS 3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3-O-S HS 12-mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3-O-S binding sites to the microtubule binding repeat 2 (R2) and proline-rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3-O-sulfation. Our work demonstrates that this rare 3-O-sulfation enhances tau–HS binding and likely the transcellular spread of tau, providing a novel target for disease-modifying treatment of AD and other tauopathies.  相似文献   
3.
A model is proposed connecting turbulence, fossil turbulence and the big-bang origin of the universe. While details are incomplete, the model is consistent with our knowledge of these processes and is supported by observations. Turbulence arises in a hot big-bang quantum gravitational dynamics scenario at Planck scales. Chaotic, eddy-like motions produce an exothermic Planck particle cascade from 10?35 m at 1032 K to 108 larger, 104 cooler, quark-gluon scales. A Planck-Kerr instability gives high Reynolds number (Re ~ 106) turbulent combustion, space-time-energy-entropy and turbulent mixing. Batchelor-Obukhov-Corrsin turbulent-temperature fluctuations are preserved as the first fossil turbulence by inflation stretching the patterns beyond the horizon ct of causal connection faster than light speed c in time t~ 10?33 sec. Fossil big-bang temperature turbulence reenters the horizon and imprints nucleosynthesis of H-He densities that seed fragmentation by gravity at 1012 s in the low Reynolds number plasma before its transition to gas at t~ 1013 s and T~ 3000 K. Multiscaling coefficients of the cosmic microwave background (CMB) temperature anisotropies closely match those for high Reynolds number turbulence, Bershadskii, A. and Sreenivasan, K.R., Phys. Lett. A 299 (2002) 149-152; Bershadskii, A. and Sreenivasan, K.R., Phys. Lett. A 319 (2003) 21-23. CMB spectra support the interpretation that big-bang turbulence fossils triggered fragmentation of the viscous plasma at supercluster to galaxy mass scales from 1046 to 1042 kg, Gibson, C.H., Appl. Mech. Rev. 49 (5) (1996) 299-315; Gibson, C.H., J. Fluids Eng. 122 (2000) 830-835; Gibson, C.H., Combust. Sci. Technol. (2004, to be published).  相似文献   
4.
Mean flow and turbulence measurements have been made in a boundary layer which grows first on a flat' wall and then on a convex wall of radius of curvature approximately 100 times the boundary layer thickness. The turbulence data include profiles of the four non-zero components of the Reynolds stress tensor and three triple velocity products obtained at five stream-wise positions. A number of measurements were also made for comparison in the boundary layer on a flat wall under the same conditions. The effects of convex curvature are to reduce turbulent intensities, shear stress and wall friction by approximately 10% of their plane flow values; the triple velocity products are halved in the curved layer. The measurements supplement the small quantity of previously published data available for testing mathematical models of turbulence. The results show the same general trends that have been observed in earlier investigations but there are significant differences in detail, notably in respect of levels of the normal stresses.  相似文献   
5.
A series of uniaxial compression specimens were tested over a range of applied ram displacement rates of 8.9 × 10−4 to 8.9 mm/sec to elucidate the effects of loading rate on the uniaxial compressive fracture stress of Witwatersrand quartzite. It was demonstrated that even within standard loading rate ranges, considerable scatter in the fracture strength (under uniaxial compression) existed in this particular quartzite rock. Nevertheless, a definite trend of increasing fracture resistance with increasing monotonic loading rate was evident inasmuch that increasing the loading rate (strain rate) by four orders of magnitude increase the fracture strength by almost 2.8 times. Prior fatigue loading also produced a significant strain strengthening as the uniaxial compressive fracture stress tended to increase in a sigmoidal fashion with increasing number of fatigue cycles prior to testing. Indeed, the fracture strength of quartzite was almost doubled in value after 10 cycles. Plane strain fracture toughness tests utilising three point bend specimens were conducted and an average of Klc = 1.7 MPa√m was realized. In both the uniaxial compression tests and the fracture toughness tests, failure occurred by crack extension predominantly by a transgranular flat cleavage-like mode through pure quartzite (silica) regions. However, crack extension was also observed to occur in an intergranular “ductile-like” mode through areas associated with inclusions prevalent in the quartzite.  相似文献   
6.
Carbohydrates dictate many biological processes including infection by pathogens. Glycosylated polymers and nanomaterials which have increased affinity due to the cluster glycoside effect, are therefore useful tools to probe function, but also as prophylactic therapies or diagnostic tools. Here, the effect of polymer structure on the coating of gold nanoparticles is studied in the context of grafting density, buffer stability, and in a lectin binding assay. RAFT polymerization is used to generate poly(oligoethyleneglycol methacrylates) and poly(N‐vinylpyrrolidones) with a thiol end‐group for subsequent immobilization onto the gold. It is observed that poly(oligoethylene glycol methacrylates), despite being widely used particle coatings, lead to low grafting densities which in turn resulted in lower stability in biological buffers. A depression of the cloud point upon nanoparticle immobilization is also seen, which might compromise performance. In comparison poly(vinylpyrrolidones) resulted in stable particles with higher grafting densities due to the compact size of each monomer unit. The higher grafting density also enabled an increase in the number of carbohydrates which can be installed per nanoparticle at the chain ends, and gave increased binding in a lectin recognition assay. These results will guide the development of new nanoparticle biosensors with enhanced specificity, affinity, and stability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1200–1208  相似文献   
7.
Industrially manufactured titanium dioxide nanoparticles have been successfully radiolabelled with 48V by irradiation with a cyclotron-generated proton beam. Centrifugation tests showed that the 48V radiolabels were stably bound within the nanoparticle structure in an aqueous medium, while X-ray diffraction indicated that no major structural modifications to the nanoparticles resulted from the proton irradiation. In vitro tests of the uptake of cold and radiolabelled nanoparticles using the human cell line Calu-3 showed no significant difference in the uptake between both batches of nanoparticles. The uptake was quantified by Inductively Coupled Plasma Mass Spectrometry and high resolution γ-ray spectrometry for cold and radiolabelled nanoparticles, respectively. These preliminary results indicate that alterations to the nanoparticles’ properties introduced by proton bombardment can be controlled to a sufficient extent that their further use as radiotracers for biological investigations can be envisaged and elaborated.  相似文献   
8.
Diversity oriented synthesis of fused pyrimidines leads to scaffolds with many biological activities. In the case of the preparation of pyrido[2,3-d]pyrimidines from 2-alkylthiopyrimidines, the formation of a new carbon-carbon bond at C5 is required, a reaction, that is, very limited in scope. However Claisen type rearrangement of simple 4-allylic ethers affords C5 substituted pyrimidines readily; in cases with an ester substituent, rearrangement occurs at room temperature. Subsequent cyclisation to afford 6-methylpyrido[2,3-d]pyrimidin-7(8H)-ones was achieved in high yield. Using allylic ethers derived from 3-chloromethyl-4-arylbut-3-en-2-ones as substrates, a new titanium[IV]chloride catalysed reaction affording 6-arylmethyl-7-methylpyrido[2,3-d]pyrimidines was discovered. In contrast, 2-alkylthiopteridines are readily available. In both cases, substitution at C2 and C4 to generate diversity has been carried out and the reactivity compared; yields of substitution products were generally higher with pteridine substrates. In biological assays unexpected hits were found for activity against the Gram positive bacterium, Nocardia farcinia, and against the parasite Trypanosoma brucei brucei, illustrating the value of diversity oriented synthesis in the discovery of biologically active compounds.  相似文献   
9.
The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10?C50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3?C6 × 106 cm?3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.  相似文献   
10.
Prion‐like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau–HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3‐O‐sulfation (3‐O‐S) of HS significantly enhances tau binding. In Hs3st1?/? (HS 3‐O‐sulfotransferase‐1 knockout) cells, reduced 3‐O‐S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3‐O‐S HS 12‐mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3‐O‐S binding sites to the microtubule binding repeat 2 (R2) and proline‐rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3‐O‐sulfation. Our work demonstrates that this rare 3‐O‐sulfation enhances tau–HS binding and likely the transcellular spread of tau, providing a novel target for disease‐modifying treatment of AD and other tauopathies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号