首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeling cascading failures in congested complex networks   总被引:1,自引:0,他引:1  
Cascading failures occur commonly in congested complex networks, where it may be expressed as the process of generation, diffusion and dissipation of congestion. Different from betweeness centrality, we introduce congestion effects to determine the load on the node. In terms of user equilibrium condition, congestion effects can be described by cost functions or link performance functions, which map link flows to travel times. By introducing conceptual “practical capacity” dynamics to cost functions, cascading failures are well discussed in terms of the degree of congestion in complex networks. Moreover, the efficiency dynamics of the network due to cascading failures is also investigated, and a transition phenomenon is uncovered independent of clustering effect.  相似文献   

2.
Tolerance of edge cascades with coupled map lattices methods   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter λ can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter λ. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems.  相似文献   

3.
吴治海  方华京 《中国物理快报》2008,25(10):3822-3825
We propose a new concept, two-step degree. Defining it as the capacity of a node of complex networks, we establish a novel capacity-load model of cascading failures of complex networks where the capacity of nodes decreases during the process of cascading failures. For scale-free networks, we find that the average two-step degree increases with the increase of the heterogeneity of the degree distribution, showing that the average two- step degree can be used for measuring the heterogeneity of the degree distribution of complex networks. In addition, under the condition that the average degree of a node is given, we can design a scale-free network with the optimal robustness to random failures by maximizing the average two-step degree.  相似文献   

4.
J.J. Wu  H.J. Sun  Z.Y. Gao 《Physica A》2007,386(1):407-413
In this paper, we study the cascading failure on weighted urban traffic equilibrium networks by introducing a more practical flow assignment mechanism. The whole process including edges overloading to node malfunctioning, dynamic spanning clustering and the phase transitions trigged with O-D flow evolving is simulated. It is found that there are three districts: slow, fast and stationary (collapse for scale-free networks) cascading failure districts. And different topologies have large effects on the ranges of these districts. Simulations also show that, although the latter can support larger traffic flow, homogeneous networks appear to be more robust against cascading failures than heterogeneous ones.  相似文献   

5.
Z.J. Bao  L.J. Ding 《Physica A》2009,388(20):4491-4498
Complex networks may undergo a global cascade of overload failures when a single highly loaded vertex or edge is intentionally attacked. Here we use the recent load model of cascading failures to investigate the performance of the small-world (SW) and scale-free (SF) networks subject to deliberate attacks on vertex and edge. Simulation results suggest that compared with the SW network, the SF network is more vulnerable to deliberate vertex attacks and more robust to deliberate edge attacks. In the SF network, deliberate vertex attacks can result in larger cascading failures than deliberate edge attacks; however, in the SW network the situation is opposite. Furthermore, with the increase of the rewiring probability the SW network becomes more and more robust to deliberate vertex and edge attacks.  相似文献   

6.
Jian-Wei Wang  Li-Li Rong 《Physica A》2009,388(8):1731-1737
Most previous existing works on cascading failures only focused on attacks on nodes rather than on edges. In this paper, we discuss the response of scale-free networks subject to two different attacks on edges during cascading propagation, i.e., edge removal by either the descending or ascending order of the loads. Adopting a cascading model with a breakdown probability p of an overload edge and the initial load (kikj)α of an edge ij, where ki and kj are the degrees of the nodes connected by the edge ij and α is a tunable parameter, we investigate the effects of two attacks for the robustness of Barabási-Albert (BA) scale-free networks against cascading failures. In the case of α<1, our investigation by the numerical simulations leads to a counterintuitive finding that BA scale-free networks are more sensitive to attacks on the edges with the lowest loads than the ones with the highest loads, not relating to the breakdown probability. In addition, the same effect of two attacks in the case of α=1 may be useful in furthering studies on the control and defense of cascading failures in many real-life networks. We then confirm by the theoretical analysis these results observed in simulations.  相似文献   

7.
Cascading dynamics in congested complex networks   总被引:1,自引:0,他引:1  
Cascading failures often occur in congested complex networks. Cascading failures can be expressed as a three phase process: generation, diffusion and dissipation of congestion. Different from betweenness centrality, we propose a congestion function to represent the extent of congestion on a given node. By introducing the concept of “delay time”, we construct an intergradation between permanent removal and nonremoval. We also build a new evaluation function of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, based on Statnet and Webgraph topologies we investigate the effects of network structure and size, delay time, processing ability and traffic generation speed on congestion propagation. Also we uncover cascading process composed of three phases and some factors affecting cascade propagation.  相似文献   

8.
李钊  郭燕慧  徐国爱  胡正名 《物理学报》2014,63(15):158901-158901
提出带有应急恢复机理的网络级联故障模型,研究模型在最近邻耦合网络,Erdos-Renyi随机网络,Watts-Strogatz小世界网络和Barabasi-Albert无标度网络四种网络拓扑下的网络级联动力学行为.给出了应急恢复机理和网络效率的定义,并研究了模型中各参数对网络效率和网络节点故障率在级联故障过程中变化情况的影响.结果表明,模型中应急恢复概率的增大减缓了网络效率的降低速度和节点故障率的增长速度,并且提高了网络的恢复能力.而且网络中节点负载容量越大,网络效率降低速度和节点故障率的增长速度越慢.同时,随着节点过载故障概率的减小,网络效率的降低速度和节点故障率的增长速度也逐渐减缓.此外,对不同网络拓扑中网络效率和网络节点故障率在级联故障过程中的变化情况进行分析,结果发现网络拓扑节点度分布的异质化程度的增大,提高了级联故障所导致的网络效率的降低速度和网络节点故障率的增长速度.以上结果分析了复杂网络中带有应急恢复机理的网络级联动力学行为,为实际网络中级联故障现象的控制和防范提供了参考.  相似文献   

9.
段东立  武小悦 《物理学报》2014,63(3):30501-030501
为了深入研究复杂网络抵制连锁故障的全局鲁棒性,针对现实网络上的负载重分配规则常常是介于全局分配与最近邻分配、均匀分配与非均匀分配的特点,围绕负荷这一影响连锁故障发生和传播最重要的物理量以及节点崩溃后的动力学过程,提出了一种可调负载重分配范围与负载重分配异质性的复杂网络连锁故障模型,并分析了该模型在无标度网络上的连锁故障条件.数值模拟获得了复杂网络抵制连锁故障的鲁棒性与模型中参数的关系.此外,基于网络负载分配规则的分析以及理论解析的推导,验证了数值模拟结论,也证明在最近邻与全局分配两种规则下都存在负载分配均匀性参数等于初始负荷强度参数即β=τ使得网络抵御连锁故障的能力最强.  相似文献   

10.
王建伟  荣莉莉 《物理学报》2009,58(6):3714-3721
相继故障普遍存在现实的网络系统中,为了更好地探讨复杂网络抵制相继故障的全局鲁棒性,采用网络中节点j上的初始负荷为Lj=kαjkj为节点j的度)的形式,并基于崩溃节点上负荷的局域择优重新分配的原则,提出了一个新的相继故障模型.依据新的度量网络鲁棒性的指标,探讨了4种典型复杂网络上的相继故障现象.数值模拟表明, 关键词: 相继故障 复杂网络 关键阈值 相变  相似文献   

11.
In this Letter, we introduce the concept of load entropy, which can be an average measure of a network's heterogeneity in the load distribution. Then we investigate the dynamics of load entropy during failure propagation using a new cascading failures load model, which can represent the node removal mechanism in many real-life complex systems. Simulation results show that in the early stage of failure propagation the load entropy for a larger cascading failure increases more sharply than that for a smaller one, and consequently the cascading failure with a larger damage can be identified at the early stage of failure propagation according to the load entropy. Particularly, load entropy can be used as an index to be optimized in cascading failures control and defense in many real-life complex networks.  相似文献   

12.
Z.J. Bao  Y.J. Cao  L.J. Ding  G.Z. Wang  Z.X. Han 《Physica A》2008,387(23):5922-5929
In this paper, the whole dynamical process of cascading failures in a class of scale-free coupled map lattices (CML’s), from the occurrence of attack to the end of failure propagation, is investigated. A dynamical model of cascading failures, based on synergetic theory, is constructed. Numerical simulations show that the macroscopic properties of the scale-free CML’s during cascading failure propagation are governed by the general laws of synergetics. This result will be useful in furthering the studies of the prediction and prevention of cascading events in many real-life complex networks.  相似文献   

13.
In this paper, we consider the artificial scale-free traffic network with dynamic weights (cost) and focus on how the removal strategies (flow-based removal, betweenness-based removal and mix-based removal) affect the damage of cascading failures based on the user-equilibrium (UE) assignment, which ensures the balance of flow on the traffic network. Experiment simulation shows that different removal strategies can bring large dissimilarities of the efficiency and damage after the intentional removal of an edge. We show that the mix-based removal of a single edge might reduce the damage of cascading failures and delay the breakdown time, especially for larger reserve capacity coefficient α. This is particularly important for real-world networks with a highly hetereogeneous distribution of flow, i.e., traffic and transportation networks, logistics networks and electrical power grids.  相似文献   

14.
H.J. Sun 《Physica A》2008,387(25):6431-6435
How to control the cascading failure has become a hot topic in recent years. In this paper, we propose a new matching model of capacity by developing a profit function to defense cascading failures on artificially created scale-free networks and the real network structure of the North American power grid. Results show that our matching model can enhance the network robustness efficiently, which is particularly important for the design of networks to deduce the damage triggered by the cascading failures.  相似文献   

15.
《Comptes Rendus Physique》2018,19(4):233-243
Many complex networks have recently been recognized to involve significant interdependence between different systems. Motivation comes primarily from infrastructures like power grids and communications networks, but also includes areas such as the human brain and finance. Interdependence implies that when components in one system fail, they lead to failures in the same system or other systems. This can then lead to additional failures finally resulting in a long cascade that can cripple the entire system. Furthermore, many of these networks, in particular infrastructure networks, are embedded in space and thus have unique spatial properties that significantly decrease their resilience to failures. Here we present a review of novel results on interdependent spatial networks and how cascading processes are affected by spatial embedding. We include various aspects of spatial embedding such as cases where dependencies are spatially restricted and localized attacks on nodes contained in some spatial region of the network. In general, we find that spatial networks are more vulnerable when they are interdependent and that they are more likely to undergo abrupt failure transitions than interdependent non-embedded networks. We also present results on recovery in spatial networks, the nature of cascades due to overload failures in these networks, and some examples of percolation features found in real-world traffic networks. Finally, we conclude with an outlook on future possible research directions in this area.  相似文献   

16.
Complex networks: Dynamics and security   总被引:3,自引:0,他引:3  
This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. In particular, we review two related problems: attack-induced cascading breakdown and range-based attacks on links. A cascade in a network means the failure of a substantial fraction of the entire network in a cascading manner, which can be induced by the failure of or attacks on only a few nodes. These have been reported for the internet and for the power grid (e.g., the August 10, 1996 failure of the western United States power grid). We study a mechanism for cascades in complex networks by constructing a model incorporating the flows of information and physical quantities in the network. Using this model we can also show that the cascading phenomenon can be understood as a phase transition in terms of the key parameter characterizing the node capacity. For a parameter value below the phase-transition point, cascading failures can cause the network to disintegrate almost entirely. We will show how to obtain a theoretical estimate for the phase-transition point. The second problem is motivated by the fact that most existing works on the security of complex networks consider attacks on nodes rather than on links. We address attacks on links. Our investigation leads to the finding that many scale-free networks are more sensitive to attacks on short-range than on long-range links. Considering that the small-world phenomenon in complex networks has been identified as being due to the presence of long-range links, i.e., links connecting nodes that would otherwise be separated by a long node-to-node distance, our result, besides its importance concerning network efficiency and security, has the striking implication that the small-world property of scale-free networks is mainly due to short-range links.  相似文献   

17.
Core-periphery structure is a typical meso-scale structure in networks. Previous studies on core-periphery structure mainly focus on the improvement of detection methods, while the research on the impact of core-periphery structure on cascading failures in interdependent networks is still missing. Therefore, we investigate the cascading failures of interdependent scale-free networks with different core-periphery structures and coupling preferences in the paper. First, we introduce an evaluation index to calculate the goodness of core-periphery structure. Second, we propose a new scale-free network evolution model, which can generate tunable core-periphery structures, and its degree distribution is analyzed mathematically. Finally, based on a degree-load-based cascading failure model, we mainly investigate the impact of goodness of core-periphery structure on cascading failures in both symmetrical and asymmetrical interdependent networks. Through numerical simulations, we find that with the same average degree, the networks with weak core-periphery structure will be more robust, while the initial load on node will influence the improvement of robustness. In addition, we also find that the inter-similarity coupling performs better than random coupling. These findings may be helpful for building resilient interdependent networks.  相似文献   

18.
Transient dynamics increasing network vulnerability to cascading failures   总被引:1,自引:0,他引:1  
We study cascading failures in networks using a dynamical flow model based on simple conservation and distribution laws. It is found that considering the flow dynamics may imply reduced network robustness compared to previous static overload failure models. This is due to the transient oscillations or overshooting in the loads, when the flow dynamics adjusts to the new (remaining) network structure. The robustness of networks showing cascading failures is generally given by a complex interplay between the network topology and flow dynamics.  相似文献   

19.
彭兴钊  姚宏  杜军  王哲  丁超 《物理学报》2015,64(4):48901-048901
研究负荷作用下相依网络中的级联故障具有重要的现实意义, 可为提高相依网络的鲁棒性提供参考. 构建了双层相依网络级联故障模型, 主要研究了外部度和内部度对负荷贡献比、耦合因素、层内度-度相关性对相依网络级联故障的影响. 研究表明, 当外部度和内部度对负荷贡献比达到一定值时, 相依网络抵抗级联故障的鲁棒性最强. 而耦合因素的影响是多方面的, 为了达到较高鲁棒性, 建议采用异配耦合方式和尽可能大的平均外部度, 并尽量使外部度保持均匀分布. 另外, 与不考虑负荷作用时相反, 当表征层内度-度相关性的相关系数越大时, 其抵抗级联故障的能力越强.  相似文献   

20.
基于相继故障信息的网络节点重要度演化机理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
段东立  战仁军 《物理学报》2014,63(6):68902-068902
分析了过载机制下节点重要度的演化机理.首先,在可调负载重分配级联失效模型基础上,根据节点失效后其分配范围内节点的负载振荡程度,提出了考虑级联失效局域信息的复杂网络节点重要度指标.该指标具有两个特点:一是值的大小可以清晰地指出节点的失效后果;二是可以依据网络负载分配范围、负载分配均匀性、节点容量系数及网络结构特征分析节点重要度的演化情况.然后,给出该指标的仿真算法,并推导了最近邻择优分配和全局择优分配规则下随机网络和无标度网络节点重要度的解析表达式.最后,实验验证了该指标的有效性和可行性,并深入分析了网络中节点重要度的演化机理,即非关键节点如何演化成影响网络级联失效行为的关键节点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号