首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
白光有机发光二极管(white organic light-emitting diodes,WOLEDs)在全色显示、固态照明以及背光源等领域有巨大的应用前景,其研究备受关注.其中,荧光/磷光混合型WOLEDs因兼具荧光材料的长寿命和磷光材料的高效率,被认为是目前最有希望实现照明应用的器件结构.荧光/磷光混合型WOLEDs最重要的问题是要解决荧光材料的单线态激子和磷光材料的三线态激子的协同发光.为了避免单线态激子和三线态激子的相互猝灭问题,必须设计有效的器件结构.本文以两种不同三线态能级的蓝光荧光材料为研究对象,介绍了不同高性能荧光/磷光混合型WOLEDs的结构设计与性能.研究表明,载流子传输平衡的高效结构设计和激子分布宽范围内的有效调控是实现高性能荧光/磷光混合型WOLEDs的关键.  相似文献   

2.
Helical light fields may carry both orbital angular and spin angular momentum which is respectively associated with their helical wavefronts (optical vortices) and rotating transverse electric fields. Interestingly, these helical light fields interact with materials and the orbital angular momentum of these fields can physically twist a range of materials, including metals, semiconductors, polymers, and liquids. With the aid of spin angular momentum, these fields can also form a range of helical structures. This light-matter interaction based on transfer of angular momentum has the potential to revolutionize industrial processes and enable technologies, such as advanced non-contact and nozzle-free printing. In this review paper, we focus on this printing technique, a process which we herein refer to as optical vortex laser induced forward transfer, and we show how it can be used for the production of next generation printed photonics/electronics/spintronics devices. Herein we review the interactions between the angular momentum of light and materials, and we discuss the ways in which optical vortices can be used to produce a variety of exotic structures. We also discuss the current state-of-the art of laser-induced forward-transfer technologies and detail some of the most novel devices, which have been fabricated using this optical vortex laser induced forward transfer, including hexagonal close-packed photonic-rings and plasmonic nanocores.  相似文献   

3.
Organic solid‐state semiconductor lasers are attracting ever‐increasing interest for their potential application in future photonic circuits. Despite the great progress made in recent years, an organic laser from 3D chiral structures has not been achieved. Now, the first example of an organic nano‐laser from the micro‐helix structure of an achiral molecule is presented. Highly regular micro‐helixes with left/right‐handed helicity from a distyrylbenzene derivative (HM‐DSB) were fabricated and characterized under microscope spectrometers. These chiral micro‐helixes exhibit unique photonic properties, including helicity‐dependent circularly polarized luminescence (CPL), periodic optical waveguiding, and length‐dependent amplified spontaneous emission (ASE) behavior. The successful observation of laser behavior from the organic micro‐helix extends our understanding to morphology chirality of organic photonic materials and provides a new design strategy towards chiral photonic circuits.  相似文献   

4.
Organic solid-state semiconductor lasers are attracting ever-increasing interest for their potential application in future photonic circuits. Despite the great progress made in recent years, an organic laser from 3D chiral structures has not been achieved. Now, the first example of an organic nano-laser from the micro-helix structure of an achiral molecule is presented. Highly regular micro-helixes with left/right-handed helicity from a distyrylbenzene derivative (HM-DSB) were fabricated and characterized under microscope spectrometers. These chiral micro-helixes exhibit unique photonic properties, including helicity-dependent circularly polarized luminescence (CPL), periodic optical waveguiding, and length-dependent amplified spontaneous emission (ASE) behavior. The successful observation of laser behavior from the organic micro-helix extends our understanding to morphology chirality of organic photonic materials and provides a new design strategy towards chiral photonic circuits.  相似文献   

5.
We report on a fabrication of photonic crystal structures in organic-inorganic hybrid films by a laser interference technique. Films containing the methacrylic group, which is photopolymerable by an adequate laser light, are prepared using a sol-gel technique from a mixture of organosilicate alkoxide and zirconium alkoxide modified by methacrylic acid. For the photopolymerization, the coated films on glass substrate are exposed to the interference light which is arranged with a square lattice in about 1 m spacing. From microscopic images of microstructures produced by the photopolymerization, the influence of changes in conditions such as pre-bake temperature, photoinitiator and irradiation energy (laser power and duration time) on periodic structure is investigated. Adjusting the conditions, 2D and 3D photonic crystal structures with the micrometer-order period are formed in organo-silicate-zirconate hybrid materials.  相似文献   

6.
目前,稀土无机发光材料在激光、光通讯、平板显示、荧光生物标记和纳米光电子器件等领域具有广泛的应用前景.稀土离子(从Ce到Yb)是一类性能优异的结构和光谱探针,其在不同介质材料中的光学性能主要取决于其局域态的电子结构和激发态动力学.对稀土发光材料开展深入的光学和光电子学基础研究有助于发现新颖的光学性能或开辟新的应用领域.依托研制的低温高分辨激光光谱和上转换量子产率等仪器,本课题组致力于稀土无机发光材料电子结构与性能研究,近年来在发光材料的控制合成、电子结构、光学性能及生物应用等方面取得了系列重要结果.这些研究有望加快实现稀土无机发光材料在生物应用的突破,实现稀土资源的高值利用.  相似文献   

7.
Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.  相似文献   

8.
White-light-emitting materials with high mobility are necessary for organic white-light-emitting transistors, which can be used for self-driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures—2-fluorenyl-2-anthracene (FlAnt) with blue emission and 2-anthryl-2-anthracence (2A) with greenish-yellow emission—to fabricate OLED devices, which showed unusual solid-state white-light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm2 V−1 s−1. This simple method provides new insight into the design of high-performance white-emitting transistor materials and structures.  相似文献   

9.
This article describes a brief review of recent research advances in chiral liquid crystals (CLCs) for laser applications. The CLC molecules have an intrinsic capability to spontaneously organize supramolecular helical assemblages consisting of liquid crystalline layers through their helical twisting power. Such CLC supramolecular helical structures can be regarded as one‐dimensional photonic crystals (PhCs). Owing to their supramolecular helical structures, the CLCs show negative birefringence along the helical axis. Selective reflection of circularly polarized light is the most unique and important optical property in order to generate internal distributed feedback effect for optically‐excited laser emission. When a fluorescent dye is embedded in the CLC medium, optical excitation gives rise to stimulated laser emission peak(s) at the band edge(s) and/or within the CLC selective reflection. Furthermore, the optically‐excited laser emission peaks can be controlled by external stimuli through the self‐organization of CLC molecules. This review introduces the research background of CLCs carried out on the PhC realm, and highlights intriguing precedents of various CLC materials for laser applications. It would be greatly advantageous to fabricate active CLC laser devices by controlling the supramolecular helical structures. Taking account of the peculiar features, we can envisage that a wide variety of supramolecular helical structures of CLC materials will play leading roles in next‐generation optoelectronic molecular devices. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.201000013  相似文献   

10.
We report that 2,6‐naphthylene‐bridged periodic mesoporous organosilicas exhibit unique fluorescence behavior that reflects molecular‐scale periodicities in the framework. Periodic mesoporous organosilicas consisting of naphthalene–silica hybrid frameworks were synthesized by hydrolysis and condensation of a naphthalene‐derived organosilane precursor in the presence of a template surfactant. The morphologies and meso‐ and molecular‐scale periodicities of the organosilica materials strongly depend on the synthetic conditions. The naphthalene moieties embedded within the molecularly ordered framework exhibited a monomer‐band emission, whereas those embedded within the amorphous framework showed a broad emission attributed to an excimer band. These results suggest that the naphthalene moieties fixed within the crystal‐like framework are isolated in spite of their densely packed structure, different from conventional organosilica frameworks in which only excimer emission was observed for both the crystal‐like and amorphous frameworks at room temperature. This key finding suggests a potential to control interactions between organic groups and thus the optical properties of inorganic/organic hybrids.  相似文献   

11.
White‐light‐emitting materials with high mobility are necessary for organic white‐light‐emitting transistors, which can be used for self‐driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures—2‐fluorenyl‐2‐anthracene (FlAnt) with blue emission and 2‐anthryl‐2‐anthracence (2A) with greenish‐yellow emission—to fabricate OLED devices, which showed unusual solid‐state white‐light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm2 V−1 s−1. This simple method provides new insight into the design of high‐performance white‐emitting transistor materials and structures.  相似文献   

12.
Luminescent materials with tunable emission are becoming increasingly desirable as we move towards needing efficient Light Emitting Diodes (LEDs) for displays. Key to developing better displays is the advancement of strategies for rationally designing emissive materials that are tunable and efficient. We report a series of emissive metal-organic frameworks (MOFs) generated using BUT-10 (BUT: Beijing University of Technology) that emits green light with λmax at 525 nm. Post-synthetic reduction of the ketone on the fluorenone ligand in BUT-10 generates new materials, BUT-10-M and BUT-10-R. The emission for BUT-10-R is hypsochromically-shifted by 113 nm. Multivariate BUT-10-M structures demonstrate emission with two maxima corresponding to the emission of both fluorenol and fluorenone moieties present in their structures. Our study represents a novel post-synthetic ligand reduction strategy for producing emissive MOFs with tunable emission ranging from green, white-blue to deep blue.  相似文献   

13.
This work focuses on the synthesis of a series of chemically bonded lanthanide/inorganic/organic hybrid materials (CE-15-Si-Ln, CE-16-Si-Ln, CE-18-Si-Ln) containing a novel aza-crown ether organic component. The materials show red emission (Ln = Eu), green emission (Ln = Tb) and near-infrared (NIR) luminescence (Ln = Nd). Three functional molecular precursors (denoted as CE-15-Si, CE-16-Si, CE-18-Si) have been synthesized with two or three N-substituted pendant arms containing chelating groups which can not only fulfill the high coordination numbers of Ln(3+) ions but also form an inorganic Si-O-Si network with tetraethoxysilane (TEOS). The resulting amorphous materials exhibit regular uniform microstructures for the organic and the inorganic components which are covalently linked through Si-O bonds via a self-assembly process. These hybrids present strong luminescent intensities in red, green and NIR ranges by embedding selected Ln(3+) ions into the hybrid system, which may lead to potential applications in organic electroluminescence displays, light emitting devices, functional membranes or chemical/biomedical sensors.  相似文献   

14.
《Chemphyschem》2003,4(6):595-603
Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas >300 m2 g?1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye‐doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer‐to‐aggregate ratio at elevated dye concentrations. The dye‐doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye‐doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high‐refractive index, mesostructured, dye‐doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices.  相似文献   

15.
Nanocellulose is an interesting building block for functional materials and has gained considerable interest due to its mechanical robustness, large surface area and biodegradability. It can be formed into various structures such as solids, films and gels such as hydrogels and aerogels and combined with polymers or other materials to form composites. Mechanical, optical and barrier properties of nanofibrillated cellulose (NFC) and microfibrillated cellulose (MFC) films were studied in order to understand their potential for packaging and functional printing applications. Impact of raw material choice and nanocellulose production process on these properties was evaluated. MFC and NFC were produced following two different routes. NFC was produced using a chemical pretreatment followed by a high pressure homogenization, whereas MFC was produced using a mechanical treatment only. TEMPO-mediated oxidation followed by one step of high pressure (2,000 bar) homogenization seems to produce a similar type of NFC from both hardwood and softwood. NFC films showed superior mechanical and optical properties compared with MFC films; however, MFC films demonstrated better barrier properties against oxygen and water vapor. Both the MFC and NFC films were excellent barriers against mineral oil used in ordinary printing inks and dichlorobenzene, a common solvent used in functional printing inks. Barrier properties against vegetable oil were also found to be exceptionally good for both the NFC and MFC films.  相似文献   

16.
Semiconductor nanowire waveguide cavities hold promise for nanophotonic applications such as lasers, waveguides, switches, and sensors due to the tight optical confinement in these structures. However, to realize their full potential, high quality nanowires, whose emission at low temperatures is dominated by free exciton emission, need to be synthesized. In addition, a proper understanding of their complex optical properties, including light-matter coupling in these subwavelength structures, is required. We have synthesized very high-quality wurztite CdS nanowires capped with a 5 nm SiO(2) conformal coating with diameters spanning 100-300 nm using physical vapor and atomic layer deposition techniques and characterized their spatially resolved photoluminescence over the 77-298 K temperature range. In addition to the Fabry-Pe?rot resonator modulated emission from the ends of the wires, the low temperature emission from the center of the wire shows clear free excitonic peaks and LO phonon replicas, persisting up to room-temperature in the passivated wires. From laser scanning measurements we determined the absorption in the vicinity of the excitonic resonances. In addition to demonstrating the high optical quality of the nanowire crystals, these results provide the fundamental parameters for strong light-matter coupling studies, potentially leading to low threshold polariton lasers, sensitive sensors and optical switches at the nanoscale.  相似文献   

17.
Tm(3+)/Yb(3+)-doped alkali-barium-bismuth-tellurite (LKBBT) glasses have been fabricated and characterized. Density, refractive index, optical absorption, absorption and emission cross-sections of Yb(3+), Judd-Ofelt parameters and spontaneous transition probabilities of Tm(3+) have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and near-infrared two-photon upconversion fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Wide infrared transmission window, high refractive index and strong blue three-photon upconversion emission of Tm(3+) indicate that Tm(3+)/Yb(3+) co-doped LKBBT glasses are promising upconversion optical and laser materials.  相似文献   

18.
Considering the instability and low photoluminescence quantum yield (PLQY) of blue-emitting perovskites, it is still challenging and attractive to construct single crystalline hybrid lead halides with highly stable and efficient blue light emission. Herein, by rationally introducing d10 transition metal into single lead halide as new structural building unit and optical emitting center, we prepared a bimetallic halide of [(NH4)2]CuPbBr5 with new type of three-dimensional (3D) anionic framework. [(NH4)2]CuPbBr5 exhibits strong band-edge blue emission (441 nm) with a high PLQY of 32 % upon excitation with UV light. Detailed photophysical studies indicate [(NH4)2]CuPbBr5 also displays broadband red light emissions derived from self-trapped states. Furthermore, the 3D framework features high structural and optical stabilities at extreme environments during at least three years. To our best knowledge, this work represents the first 3D non-perovskite bimetallic halide with highly efficient and stable blue light emission.  相似文献   

19.
Recent advances on the use of mesoporous and mesostructured materials for electronic and optical applications are reported. The focus is on materials which are processed by block-copolymer templating of silica under weakly acidic conditions and by employing dip- and spin-coating as well as soft lithographic methods to bring them into a well-defined macroscopic shape. Several chemical strategies allow the mesostructure architecture to be used for electronic/optical applications: Removal of the block-copolymers results in highly porous, mechanically and thermally robust materials which are promising candidates for low dielectric constant materials. Since the pores are easily accessible, these structures are also ideal hosts for optical sensors, when suitable are incorporated during synthesis. For example, a fast response optical pH sensor was implemented on this principle. As-synthesized mesostructured silica/block-copolymer composites, on the other hand, are excellently suited as host systems for laser dyes and photochromic molecules. Laser dyes like rhodamine 6G can be incorporated during synthesis in high concentrations with reduced dimerization. This leads to very-low-threshold laser materials which also show a good photostability of the occluded dye. In the case of photochromic molecules, the inorganic-organic nanoseparation enables a fast switching between the colorless and colored form of a spirooxazine molecule, attributed to a partitioning of the dye between the block-copolymer chains. The spectroscopic properties of these dye-doped nanocomposite materials suggest a silica/block-copolymer/dye co-assembly process, whereby the block-copolymers help to highly disperse the organic dye molecules.  相似文献   

20.
近十年,有机无机杂化钙钛矿凭借其新颖优异的光电特性而引起广泛关注。最近,手性钙钛矿由于结合了钙钛矿材料和手性材料各自独特性能,在三维显示、光学信息处理、量子光学、生物探测、自旋电子等方面具有重要应用价值。根据有机、无机组分的空间分布,可以对手性钙钛矿的结构维度进行分类。本文以手性钙钛矿的不同结构维度为出发点,分别阐述了一维、二维和三维手性钙钛矿的晶体结构、光学和光电特性,包括圆二色性、圆偏振光致发光和光电探测等特性。考虑到二维手性钙钛矿具有独特的范德华层状晶体结构,重点介绍了其与其它二维材料组合成二维异质结构方面的工作。最后,分别从材料制备和器件应用的角度,总结了手性钙钛矿的重点挑战问题和未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号