首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The multiple-channel reactions SiH(3) + SiH(CH(3))(3) --> products are investigated by direct dynamics method. The minimum energy path (MEP) is calculated at the MP2/6-31+G(d,p) level, and energetic information is further refined by the MC-QCISD (single-point) method. The rate constants for individual reaction channels are calculated by the improved canonical variational transition state theory with small-curvature tunneling correction over the temperature range of 200-2400 K. The theoretical three-parameter expression k(T) = 2.44 x 10(-23)T(3.94) exp(-4309.55/T) cm(3)/(molecule s) is given. Our calculations indicate that hydrogen abstraction channel R1 from SiH group is the major channel because of the smaller barrier height among five channels considered.  相似文献   

2.
Theoretical investigations are carried out on the multiple-channel reactions, CH(3) + SiH(CH(3))(3) → products and CF(3) + SiH(CH(3))(3) → products. The minimum energy paths (MEP) are calculated at the MP2/6-311 + G(d,p) level, and energetic information is further refined by the MC-QCISD (single point) method. The rate constants for major reaction channels are calculated by the canonical variational transition state theory (CVT) with small-curvature tunneling (SCT) correction over the temperature range 200-1500 K. The theoretical rate constants are in good agreement with the available experimental data and are found to be k(1a)(T) = 1.93 × 10(-24) T(3.15) exp(-1214.59/T) and k(2a)(T) = 1.33 × 10(-25) T(4.13) exp(-397.94/T) (in unit of cm(3) molecule(-1) s(-1)). Our calculations indicate that hydrogen abstraction channel from SiH group is the major channel due to the smaller barrier height among five channels considered.  相似文献   

3.
The dual-level direct dynamics approach is employed to study the dynamics of the CH(3)OCH(3) + H (R1) and CH(3)OCH(3) + CH(3) (R2) reactions. Low-level calculations of the potential energy surface are carried out at the MP2/6-311+G(d,p) level of theory. High-level energetic information is obtained at the QCISD(T) level of theory with the 6-311+G(3df,3pd) basis set. The dynamics calculations are performed using variational transition state theory (VTST) with the interpolated single-point energies (ISPE) method, and small-curvature tunneling (SCT) is included. It is shown that the reaction of CH(3)OCH(3) with H (R1) may proceed much easier and with a lower barrier height than the reaction with CH(3) radical (R2). The calculated rate constants and activation energies are in good agreement with the experimental values. The calculated rate constants are fitted to k(R1) = 1.16 x 10(-19) T(3) exp(-1922/T) and k(R2) = 1.66 x 10(-28) T(5) exp(-3086/T) cm(3) mol(-1) s(-1) over a temperature range 207-2100 K. Furthermore, a small variational effect and large tunneling effect in the lower temperature range are found for the two reactions.  相似文献   

4.
The direct hydrogen abstraction reactions of Cl atom with SiH(n)Cl(4-n) (n=1,2,3,4) have been studied systematically using ab initio molecular orbital theory. Geometries have been optimized at the MP2 level with 6-311+G(d) basis set, QCISD(T)/6-311+G(d,p) has been used in the final single point energy calculation. The kinetic calculations of these reactions have been explored using the canonical variational transition (CVT) state theory method with small-curvature tunneling (SCT) effect correction over the temperature range of 200-2000 K. The CVT/SCT rate constants exhibit typical non-Arrhenius behavior and three-parameter rate-temperature formulas have been fitted for the reactions of Cl with SiH4, SiH3Cl, SiH2Cl2, and SiHCl3, respectively (in unit of cm(3) molecule(-1) s(-1)). The calculated CVT/SCT rate constants are in agreement with the available experimental values.  相似文献   

5.
We present a direct ab initio dynamics study on the hydrogen abstraction reactions N(2)H(4)+R-->N(2)H(3)+RH (R=NH(2),CH(3)), which are predicted to have six possible reaction channels for NH(2) abstraction and four for CH(3) abstraction caused by the different N(2)H(4) isomers and various attacking orientations of foreign radical to N(2)H(4). The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of all reaction channels are obtained at the UMP2(full)6-31+G(d,p) level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of MC-QCISD method. The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that the favorable reaction channels are channels (n1) and (n4) as well as (c1) and (c3) (refer to Scheme 1) in the whole temperature range. The total ICVT/SCT rate constants of all channels for the two reactions at the MC-QCISDUMP2(full)6-31+G(d,p) level are both in good agreement with the available experimental data, and corresponding three-parameter expressions of k(ICVTSCT) in 220-3000 K are fitted as 6.46 x 10(-15)(T298)(3.60) exp(-386T) cm(3) mol(-1) s(-1) for NH(2) abstraction and 1.04 x 10(-14)(T298)(4.00) exp(-2037T) cm(3) mol(-1) s(-1) for CH(3) abstraction. Additionally, the long range interaction between the H atom of X-H bond in foreign radicals and the lone pair on the nonreactive N atom of the transition states is further discussed to explain the various transition-state numbers of the two similar hydrogen abstraction reactions.  相似文献   

6.
The multiple-channel reactions OH + CH3NHC(O)OCH3 --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-311+G(d,p) level, and energetic information is further refined by the BMC-CCSD (single-point) method. The rate constants for every reaction channels, R1, R2, R3, and R4, are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-1000 K. The total rate constants are in good agreement with the available experimental data and the two-parameter expression k(T) = 3.95 x 10(-12) exp(15.41/T) cm3 molecule(-1) s(-1) over the temperature range 200-1000 K is given. Our calculations indicate that hydrogen abstraction channels R1 and R2 are the major channels due to the smaller barrier height among four channels considered, and the other two channels to yield CH3NC(O)OCH3 + H2O and CH3NHC(O)(OH)OCH3 + H2O are minor channels over the whole temperature range.  相似文献   

7.
Theoretical investigations are carried out on the reaction mechanism of the reactions of CF3OCHF2 (HFOC-125) with the OH radials and Cl atoms, as well as the heats of formation of CF3OCHF2 and CF3OCF2. The electronic structure information on the potential energy surface for each reaction is obtained at the B3LYP/6-311G(d,p) level, and energetic information is further refined by G3(MP2) theory. The direct dynamics calculation of the hydrogen abstraction reactions are also performed at the G3(MP2)//B3LYP/ 6-311G(d,p) level. The classical energy profile is corrected by interpolated single-point energies (ISPE) approach, incorporating the small-curvature tunnelling effect (SCT) calculated by the variational transition-state theory (VTST). The rate constants are in good agreement with the experimental data and are found to be k1 = 4.95 x 10(-30)T(5.40)exp(-347/T) and k2 = 1.86 x 10(-23)T(3.43)exp(-1579/T) cm3 molecule(-1)s(-1) over the temperature range 200-2000 K. The rate constants at 298 K for these two reactions are 3.38 x 10(-16) and 2.80 x 10(-17) cm3 molecule(-1)s(-1), respectively. Using group-balanced isodesmic reactions as working chemical reactions, the standard enthalpies of formation for CF3OCHF2 and CF3OCF2 are -312.3 +/- 1.0 and -257.3 +/- 1.0 kcalmol(-1), respectively, evaluated by G3(MP2) theory based on the B3LYP/6-311G(d,p) geometries. The theoretical studies provide rate constants of the title reactions and the enthalpies of the species, which are important parameters in determining the atmospheric lifetime and the feasible pathways for the loss of HFOC-125.  相似文献   

8.
A direct dynamics study is carried out for the hydrogen abstraction reactions Cl + CH(4-n)F(n) (n = 1-3) in the temperature range of 200-1,000 K. The minimum energy paths (MEPs) of these reactions are calculated at the BH&H-LYP/6-311G(d,p) level, and the energies along the MEPs are further refined at the QCISD(T)/6-311+G(2df,2p) and QCISD(T)/6-311+G(d,p) (single-point) level. The rate constants obtained by using the improved canonical variational transition state theory incorporating small-curvature tunneling correction (ICVT/SCT) are in good agreement with the available experimental results. It is shown that the vibrational adiabatic potential energy curves for these reactions have two barriers, a situation similar to the analogous reactions CH(3)X+Cl (X=Cl, Br). The theoretical results show that for the title reactions the variational effect should not be neglected over the whole considered temperature range, while the small-curvature tunneling effect is only important in the lower temperature range. The effects of fluorine substitution on the rate of this kind of reactions are also examined.  相似文献   

9.
The multiple-channel reactions Br + CH(3)SCH(3) --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-31+G(d,p) level, and energetic information is further refined by the G3(MP2) (single-point) theory. The rate constants for every reaction channels, Br + CH(3)SCH(3) --> CH(3)SCH(2) + HBr (R1), Br + CH(3)SCH(3) --> CH(3)SBr + CH(3) (R2), and Br + CH(3)SCH(3) -->CH(3)S + CH(3)Br (R3), are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-3000 K. The total rate constants are in good agreement with the available experimental data, and the two-parameter expression k(T) = 2.68 x 10(-12) exp(-1235.24/T) cm(3)/(molecule s) over the temperature range 200-3000 K is given. Our calculations indicate that hydrogen abstraction channel is the major channel due to the smallest barrier height among three channels considered, and the other two channels to yield CH(3)SBr + CH(3) and CH(3)S + CH(3)Br are minor channels over the whole temperature range.  相似文献   

10.
Rate constants for the gas phase reactions of OH radicals with 2-propanol and three fluorine substituted 2-propanols, (CH(3))(2)CHOH (k(0)), (CF(3))(2)CHOH (k(1)), (CF(3))(2)C(OH)CH(3) (k(2)), and (CF(3))(3)COH (k(3)), were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220-370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions: k(0)(T) = 1.46 × 10(-11) exp{-883/T} + 1.30 × 10(-12) exp{+371/T} cm(3) molecule(-1) s(-1); k(1)(T) = 1.19 × 10(-12) exp{-1207/T} + 7.85 × 10(-16) exp{+502/T } cm(3) molecule(-1) s(-1); k(2)(T) = 1.68 × 10(-12) exp{-1718/T} + 7.32 × 10(-16) exp{+371/T} cm(3) molecule(-1) s(-1); k(3)(T) = 3.0 × 10(-20) × (T/298)(11.3) exp{+3060/T} cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 2.4 days and 1.9, 6.3, and 46 years, respectively. UV absorption cross sections were measured between 160 and 200 nm. The IR absorption cross sections of the three fluorinated compounds were measured between 450 and 1900 cm(-1), and their global warming potentials were estimated.  相似文献   

11.
The potential energy surface, including the geometries and frequencies of the stationary points, of the reaction HFCO + OH is calculated using the MP2 method with 6-31+G(d,p) basis set, which shows that the direct hydrogen abstraction route is the most dominating channel with respect to addition and substitution channels. For the hydrogen abstraction reaction, the single-point energies are refined at the QCISD(T) method with 6-311++G(2df,2pd) basis set. The calculated standard reaction enthalpy and barrier height are -17.1 and 4.9 kcal mol(-1), respectively, at the QCISD(T)/6-311++G(2df,2pd)//MP2/6-31+G(d,p) level of theory. The reaction rate constants within 250-2500 K are calculated by the improved canonical variational transition state theory (ICVT) with small-curvature tunneling (SCT) correction at the QCISD(T)/6-311++G(2df,2pd)//MP2/6-31+G(d,p) level of theory. The fitted three-parameter formula is k = 2.875 x 10(-13) (T/1000)1.85 exp(-325.0/T) cm(3) molecule(-1) s(-1). The results indicate that the calculated ICVT/SCT rate constant is in agreement with the experimental data, and the tunneling effect in the lower temperature range plays an important role in computing the reaction rate constants.  相似文献   

12.
R S Zhu  M C Lin 《Chemphyschem》2004,5(12):1864-1870
The mechanisms for ClO+NO and its reverse reactions were investigated by means of ab initio molecular orbital and statistical theory calculations. The species involved were optimized at the B3LYP/6-311 +G(3df) level, and their energies were refined at the CCSD(T)/6-311+ G(3df)//B3LYP/6-311 + G(3df) level. Five isomers and the transition states among them were located. The relative stability of these isomers is ClNO2 > cis-ClONO > trans-ClONO > cis-OClNO>trans-OClNO. The heats of formation of the three most-stable isomers were predicted using isodesmic reactions by different methods. The predicted bimolecular reaction rate constant shows that, below 100 atm, the formation of Cl+NO2 is dominant and pressure-independent. The total rate constant can be expressed as: k(ClO+NO)= 1.43 x 10(-9)T(-083)exp(92/ T) cm3 molecule(-1)s(-1) in the temperature range of 200-1000 K, in close agreement with experimental data. For the reverse reaction, Cl+NO2-->ClNO2 and ClONO (cis and trans isomers), the sum of the predicted rate constants for the formation of the three isomers and their relative yields also reproduce the experimental data well. The predicted total third-order rate constants in the temperature range of 200-1000 K can be represented by: k0(He) = 4.89 x 10(-6)T(-5.85) exp(-796/T) cm6 molecule(-1)s(-1) and k0(N2) =5.72 x 10(-15)T(-5.80) exp(-814/T) cm6 molecule(-1)s(-1). The predicted high- and low-pressure limit decomposition rates of CINO2 in Ar in the temperature range 400-1500 K can be expressed, respectively, by: k-(ClNO2) = 7.25 x 10(19)T(-1.89) exp(-16875/T) s(-1) and kd(ClNO2) = 2.51 x 10(38)T(-6.8) exp(-18409/T) cm3 molecule(-1) s(-1). The value of k0(ClNO2) is also in reasonable agreement with available experimental data.  相似文献   

13.
We present a theoretical study of the hydrogen abstraction reactions from CH(3)F and CH(2)F(2) by an ozone molecule. The geometries and harmonic vibrational frequencies of all stationary points are calculated at the MPW1K, BHandHLYP, and MPWB1K levels of theory. The energies of all of the stationary points were refined by using both higher-level (denoted as HL) energy calculations and QCISD(T)/6-311++G(2df,2pd) calculations based on the optimized geometries at the MPW1K/6-31+G(d,p) level of theory. The minimum energy paths (MEPs) were obtained by the MPW1K/6-31+G(d,p) level of theory. Energetic information of the points along the MEPs is further refined by the HL method. The rate constants were evaluated on the basis of the MEPs from the HL level of theory in the temperature range 200-2500 K by using the conventional transition-state theory (TST), the canonical variational transition-state theory (CVT), the microcanonical variational transition-state theory (microVT), the CVT coupled with the small-curvature tunneling (SCT) correction (CVT/SCT), and the microVT coupled with the Eckart tunneling correction (microVT/Eckart) based on the ab initio calculations. A general agreement was found among the TST, CVT, and microVT theories. The fitted three-parameter Arrhenius expressions of the calculated forward CVT/SCT and microVT/Eckart rate constants of the ozonolysis of fluoromethane are k(CVT/SCT)(T) = 2.76 x 10(-34)T(5.81)e((-13975/)(T)) and k(microVT/Eckart)(T) = 1.15 x 10(-34)T(5.97)e((-14530.7/)(T)), respectively. The fitted three-parameter Arrhenius expressions of the calculated forward CVT/SCT and microVT/Eckart rate constants of the ozonolysis of difluoromethane are k(CVT/SCT)(T) = 2.29 x 10(-36)T(6.42)e((-15451.6/)(T)) and k(microVT/Eckart)(T) = 1.31 x 10(-36)T(6.45)e((-15465.8/)(T)), respectively.  相似文献   

14.
The reactions of Cl with a series of linear alcohols: methanol (k1), ethanol (k2), 1-propanol (k3), 1-butanol (k4), and 1-pentanol (k5) were investigated as a function of temperature in the range of 264-382 K by laser photolysis-resonance fluorescence. The obtained kinetic data were used to derive the following Arrhenius expressions: k1=(3.55+/-0.22)x10(-10) exp[-(559+/-40)T], k2=(5.25+/-0.52)x10(-11) exp[(190+/-68)T], k3=(2.63+/-0.21)x10(-11) exp[(525+/-51)T], k4=(3.12+/-0.31)x10(-11) exp[(548+/-65)T], and k5=(3.97+/-0.48)x10(-11) exp[(533+/-77)T] (in units of cm(3) molecule(-1) s(-1)). To our knowledge, these are the first absolute kinetic data reported for 1-butanol and 1-pentanol and also the first kinetic study as a function of temperature for these two compounds. Results, mechanism, and tropospheric implications are discussed and compared with the reported reactivity with OH radicals. Moreover, a theoretical insight into the mechanisms of these reactions has also been pursued through ab initio M?ller-Plesset second-order perturbation treatment calculations with 6-311G** basis sets. Optimized geometries and vibrational frequencies have been obtained for transition states and molecular complexes appearing along the different reaction pathways. Furthermore, molecular energies have been calculated at quadratic configuration interaction with single, double, and triple excitations level in order to get an estimation of the activation energies.  相似文献   

15.
The hydrogen abstraction reaction of the OH radical with CH(3)CHF(2) (HFC152-a) has been studied theoretically over a wide temperature range, 200-3000 K. Two different reactive sites of the molecule, CH(3) and CHF(2) groups have been investigated precisely, and results confirm that CHF(2) position of the molecule is a highly reactive site. In this study, three recently developed hybrid density functional theories, namely, MPWB1K, MPW1B95, and MPW1K, are used. The MPWB1K/6-31+G(d,p) method gives the best result for kinetic calculations, including barrier heights, reaction path information and geometry of transition state structures and other stationary points. To refine the barrier height of each channel, a single point energy calculation was performed in MPWB1K/MG3S method. The obtained rate constants by dual level direct dynamics with the interpolated single point energy method (VTST-ISPE) using DFT quantum computational methods, are consistent with available experimental data. The canonical variational transition state theory (CVT) with the zero-curvature and also the small-curvature tunneling correction methods is used to calculate the rate constants. Over the temperature range 200-3000 K, the variation effect, tunneling contribution, branching ratio of each channel are calculated. The rate constants and their temperature dependency in the form of a fitted three-parameter Arrhenius expression are k(1)(T) = 2.00 x 10(-19)(T)(2.24) exp(-1273/T), k(2)(T) = 1.95 x 10(-19)(T)(2.46) exp(-2374/T), and k(T) = 3.13 x 10(-19)(T)(2.47) exp(- 1694/T) cm(3) molecule(-1) s(-1). For the H abstraction from the CHF(2) group, a nonclassical reflection effect is detected as a dominant quantum effect.  相似文献   

16.
17.
The potential energy surface for the O((3)P) + C(2)H(4) reaction, which plays an important role in C(2)H(4)/O(2) flames and in hydrocarbon combustion in general, was theoretically reinvestigated using various quantum chemical methods, including G3, CBS-QB3, G2M(CC,MP2), and MRCI. The energy surfaces of both the lowest-lying triplet and singlet electronic states were constructed. The primary product distribution for the multiwell multichannel reaction was then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. Intersystem crossing of the "hot" CH(2)CH(2)O triplet adduct to the singlet surface, shown to account for about half of the products, was estimated to proceed at a rate of approximately 1.5 x 10(11) s(-1). In addition, the thermal rate coefficients k(O + C(2)H(4)) in the T = 200-2000 K range were computed using multistate transition state theory and fitted by a modified Arrhenius expression as k(T) = 1.69 x 10(-16) x T(1.66) x exp(-331 K/T) . Our computed rates and product distributions agree well with the available experimental results. Product yields are found to show a monotonic dependence on temperature. The major products (with predicted yields at T = 300 K/2000 K) are: CH(3) + CHO (48/37%), H + CH(2)CHO (40/19%), and CH(2)(X(3)B(1)) + H(2)CO (5/29%), whereas H + CH(3)CO, H(2) + H(2)CCO, and CH(4) + CO are all minor (< or =5%).  相似文献   

18.
利用双水平直接动力学方法对反应CH3SH+H的微观机理和动力学性质进行了理论研究.对于此反应的三个反应通道,即—SH和—CH3基团上的两个氢提取通道及一个取代通道,在MP2/6-311+G(d,p)水平上优化得到了各稳定点的结构及振动频率,并在G3(MP2)水平上进行了单点能量计算以获得更精确的能量信息;在此基础上运用结合小曲率隧道效应校正的变分过渡态理论(CVT/SCT)计算了各反应通道在220-1000 K温度区间的速率常数.计算结果表明提取—SH基团上H的反应通道R1在整个反应温度区间都是主要通道,而随着温度的升高,低温下的次要反应通道——取代通道R3变得越来越重要,并且在高温下将成为一个竞争的反应通道;提取—CH3基团上H的反应通道(R2)由于具有较高的反应能垒,因而,其对总反应速率常数的贡献可以忽略.计算得到的总反应速率常数与已有的实验值符合得很好,进而我们预测了该反应在220-1000 K温度范围内速率常数的表达式为:k=5.00×10-18T2.39exp(-119.81/T),为将来的实验研究提供参考.  相似文献   

19.
Theoretical investigations are carried out on the multichannel reaction CHBr(2)Cl + Cl by means of direct dynamics methods. The minimum energy path (MEP) is obtained at the BH&H-LYP/6-311G(d,p) level, and energetic information is further refined at the CCSD(T)/6-311+G(2df,2p) (single-point) level. The rate constants for three reaction channels, H-abstraction, Br-abstraction, and Cl-abstraction, are calculated by using the improved canonical variational transition state theory (ICVT) incorporating with the small-curvature tunneling (SCT) correction. The theoretical overall rate constants are in good agreement with the available experimental data and are found to be k=2.58 x 10(-15) T(1.18) exp(-861.17/T) cm(3)molecule(-1)s(-1) over the temperature range 200--2400 K. For the title reaction, H-abstraction reaction channel is the major channel at the lower temperatures, while as the temperature increases, the contribution of Br-abstraction reaction channel should be taken into account. At 2180 K, the rate constants of these two pathways are equal. Cl-abstraction reaction channel is minor channel over the whole temperature region.  相似文献   

20.
The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase as the temperature increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号