首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Various upgrades have been completed at the XRD1 beamline at the Brazilian synchrotron light source (LNLS). The upgrades are comprehensive, with changes to both hardware and software, now allowing users of the beamline to conduct X‐ray powder diffraction experiments with faster data acquisition times and improved quality. The main beamline parameters and the results obtained for different standards are presented, showing the beamline ability of performing high‐quality experiments in transmission geometry. XRD1 operates in the 5.5–14 keV range and has a photon flux of 7.8 × 109 photons s?1 (with 100 mA) at 12 keV, which is one of the typical working energies. At 8 keV (the other typical working energy) the photon flux at the sample position is 3.4 × 1010 photons s?1 and the energy resolution ΔE/E = 3 × 10?4.  相似文献   

2.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   

3.
X‐Treme is a soft X‐ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization‐dependent X‐ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end‐station has a superconducting 7 T–2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 1012 photons s?1, are presented. Scientific examples showing X‐ray magnetic circular and X‐ray magnetic linear dichroism measurements are also presented.  相似文献   

4.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

5.
The IMCA‐CAT bending‐magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high‐quality multi‐ and single‐wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending‐magnet beamline achieves a flux of 8 × 1011 photons s?1 at 1 Å wavelength, at a beamline aperture of 1.5 mrad (horizontal) × 86 µrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) δE/E = 1.5 × 10?4 (at 10 kV). The beamline operates in a dynamic range of 7.5–17.5 keV and delivers to the sample focused beam of size (FWHM) 240 µm (horizontally) × 160 µm (vertically). The performance of the 17‐BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.  相似文献   

6.
BioCARS, a NIH‐supported national user facility for macromolecular time‐resolved X‐ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator‐based beamline optimized for single‐shot laser‐pump X‐ray‐probe measurements with time resolution as short as 100 ps. The source consists of two in‐line undulators with periods of 23 and 27 mm that together provide high‐flux pink‐beam capability at 12 keV as well as first‐harmonic coverage from 6.8 to 19 keV. A high‐heat‐load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X‐ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high‐speed chopper isolates single X‐ray pulses at 1 kHz in both hybrid and 24‐bunch modes of the APS storage ring. In hybrid mode each isolated X‐ray pulse delivers up to ~4 × 1010 photons to the sample, thereby achieving a time‐averaged flux approaching that of fourth‐generation X‐FEL sources. A new high‐power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage‐ring RF clock with long‐term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.  相似文献   

7.
Soft‐X‐ray angle‐resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft‐X‐ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X‐ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X‐ray beam and optical axis of the analyzer. The high photon flux of up to 1013 photons s?1 (0.01% bandwidth)?1 delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft‐X‐ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft‐X‐ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three‐dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.  相似文献   

8.
Fabrication and testing of a prototype transmission‐mode pixelated diamond X‐ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X‐ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic‐grade chemical vapor deposition single‐crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ~1 kHz, which leads to an image sampling rate of ~30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10?2 to 90 W mm?2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software‐controlled single channel mode providing accurate flux measurement (fluctuation within 1%).  相似文献   

9.
A new ultrahigh‐energy‐resolution and wide‐energy‐range soft X‐ray beamline has been designed and is under construction at the Shanghai Synchrotron Radiation Facility. The beamline has two branches: one dedicated to angle‐resolved photoemission spectroscopy (ARPES) and the other to photoelectron emission microscopy (PEEM). The two branches share the same plane‐grating monochromator, which is equipped with four variable‐line‐spacing gratings and covers the 20–2000 eV energy range. Two elliptically polarized undulators are employed to provide photons with variable polarization, linear in every inclination and circular. The expected energy resolution is approximately 10 meV at 1000 eV with a flux of more than 3 × 1010 photons s?1 at the ARPES sample positions. The refocusing of both branches is based on Kirkpatrick–Baez pairs. The expected spot sizes when using a 10 µm exit slit are 15 µm × 5 µm (horizontal × vertical FWHM) at the ARPES station and 10 µm × 5 µm (horizontal × vertical FWHM) at the PEEM station. The use of plane optical elements upstream of the exit slit, a variable‐line‐spacing grating and a pre‐mirror in the monochromator that allows the influence of the thermal deformation to be eliminated are essential for achieving the ultrahigh‐energy resolution.  相似文献   

10.
A new modular X‐ray‐transparent experimental cell enables tomographic investigations of fluid rock interaction under natural reservoir conditions (confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa, temperature ranging from 296 to 473 K). The portable cell can be used at synchrotron radiation sources that deliver a minimum X‐ray flux density of 109 photons mm?2 s?1 in the energy range 30–100 keV to acquire tomographic datasets in less than 60 s. It has been successfully used in three experiments at the bending‐magnet beamline 2BM at the Advanced Photon Source. The cell can be easily machined and assembled from off‐the‐shelf components at relatively low costs, and its modular design allows it to be adapted to a wide range of experiments and lower‐energy X‐ray sources.  相似文献   

11.
A small‐angle X‐ray scattering (SAXS) set‐up has recently been developed at beamline I711 at the MAX II storage ring in Lund (Sweden). An overview of the required modifications is presented here together with a number of application examples. The accessible q range in a SAXS experiment is 0.009–0.3 Å?1 for the standard set‐up but depends on the sample‐to‐detector distance, detector offset, beamstop size and wavelength. The SAXS camera has been designed to have a low background and has three collinear slit sets for collimating the incident beam. The standard beam size is about 0.37 mm × 0.37 mm (full width at half‐maximum) at the sample position, with a flux of 4 × 1010 photons s?1 and λ = 1.1 Å. The vacuum is of the order of 0.05 mbar in the unbroken beam path from the first slits until the exit window in front of the detector. A large sample chamber with a number of lead‐throughs allows different sample environments to be mounted. This station is used for measurements on weakly scattering proteins in solutions and also for colloids, polymers and other nanoscale structures. A special application supported by the beamline is the effort to establish a micro‐fluidic sample environment for structural analysis of samples that are only available in limited quantities. Overall, this work demonstrates how a cost‐effective SAXS station can be constructed on a multipurpose beamline.  相似文献   

12.
DESIRS is a new undulator‐based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas‐phase studies of molecular and electronic structures, reactivity and polarization‐dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier‐transform spectrometer (FTS) for ultra‐high‐resolution absorption spectroscopy (resolving power up to 106) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5–40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m‐long pure electromagnetic variable‐polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi‐perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic‐free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre‐focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off‐plane normal‐incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm?1, allowing the flux‐to‐resolution trade‐off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 1010–1011 photons s?1 range in a 1/50000 bandwidth, and 1012–1013 photons s?1 in a 1/1000 bandwidth, which is very satisfactory although slightly below optical simulations. All of these features make DESIRS a state‐of‐the‐art VUV beamline for spectroscopy and dichroism open to a broad scientific community.  相似文献   

13.
There is a growing interest in the biomedical community in obtaining information concerning the distribution and local chemical environment of metals in tissues and cells. Recently, biological X‐ray fluorescence microscopy (XFM) has emerged as the tool of choice to address these questions. A fast‐scanning high‐flux X‐ray microprobe, built around a recently commissioned pair of 200 mm‐long Rh‐coated silicon Kirkpatrick–Baez mirrors, has been constructed at BioCAT beamline 18ID at the Advanced Photon Source. The new optical system delivers a flux of 1.3 × 1012 photons s?1 into a minimum focal spot size of ~3–5 µm FWHM. A set of Si drift detectors and bent Laue crystal analyzers may be used in combination with standard ionization chambers for X‐ray fluorescence measurements. BioCAT's scanning software allows fast continuous scans to be performed while acquiring and storing full multichannel analyzer spectra per pixel on‐the‐fly with minimal overhead time (<20 ms per pixel). Together, the high‐flux X‐ray microbeam and the rapid‐scanning capabilities of the BioCAT beamline allow the collection of XFM and micro X‐ray absorption spectroscopy (microXAS) measurements from as many as 48 tissue sections per day. This paper reports the commissioning results of the new instrument with representative XFM and microXAS results from tissue samples.  相似文献   

14.
The implementation of a laser pump/X‐ray probe scheme for performing picosecond‐resolution X‐ray diffraction at the 1W2B wiggler beamline at Beijing Synchrotron Radiation Facility is reported. With the hybrid fill pattern in top‐up mode, a pixel array X‐ray detector was optimized to gate out the signal from the singlet bunch with interval 85 ns from the bunch train. The singlet pulse intensity is ~2.5 × 106 photons pulse?1 at 10 keV. The laser pulse is synchronized to this singlet bunch at a 1 kHz repetition rate. A polycapillary X‐ray lens was used for secondary focusing to obtain a 72 µm (FWHM) X‐ray spot. Transient photo‐induced strain in BiFeO3 film was observed at a ~150 ps time resolution for demonstration.  相似文献   

15.
16.
The resonant scattering and diffraction beamline P09 at PETRA III at DESY is equipped with a 14 T vertical field split‐pair magnet. A helium‐3 refrigerator is available that can be fitted inside the magnet's variable‐temperature insert. Here the results of a series of experiments aimed at determining the beam conditions permitting operations with the He‐3 insert are presented. By measuring the tetragonal‐to‐orthorhombic phase transition occurring at 2.1 K in the Jahn–Teller compound TmVO4, it is found that the photon flux at P09 must be attenuated down to 1.5 × 109 photons s?1 for the sample to remain at temperatures below 800 mK. Despite such a reduction of the incident flux and the subsequent use of a Cu(111) analyzer, the resonant X‐ray magnetic scattering signal at the Tm LIII absorption edge associated with the spin‐density wave in TmNi2B2C below 1.5 K is intense enough to permit a complete study in magnetic field and at sub‐Kelvin temperatures to be carried out.  相似文献   

17.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This work reports an unconventional defect engineering approach using synchrotron‐radiation‐based X‐rays on ceria nanocrystal catalysts of particle sizes 4.4–10.6 nm. The generation of a large number of oxygen‐vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in CeO2 catalytic materials bombarded by high‐intensity synchrotron X‐ray beams of beam size 1.5 mm × 0.5 mm, photon energies of 5.5–7.8 keV and photon fluxes up to 1.53 × 1012 photons s?1. The experimentally observed cation reduction was theoretically explained by a first‐principles formation‐energy calculation for oxygen vacancy defects. The results clearly indicate that OVD formation is mainly a result of X‐ray‐excited core holes that give rise to valence holes through electron down conversion in the material. Thermal annealing and subvalent Y‐doping were also employed to modulate the efficiency of oxygen escape, providing extra control on the X‐ray‐induced OVD generating process. Both the core‐hole‐dominated bond breaking and oxygen escape mechanisms play pivotal roles for efficient OVD formation. This X‐ray irradiation approach, as an alternative defect engineering method, can be applied to a wide variety of nanostructured materials for physical‐property modification.  相似文献   

19.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

20.
A focusing system based on a polycapillary half‐lens optic has been successfully tested for transmission and fluorescence µ‐X‐ray absorption spectroscopy at a third‐generation bending‐magnet beamline equipped with a non‐fixed‐exit Si(111) monochromator. The vertical positional variations of the X‐ray beam owing to the use of a non‐fixed‐exit monochromator were shown to pose only a limited problem by using the polycapillary optic. The expected height variation for an EXAFS scan around the Fe K‐edge is approximately 200 µm on the lens input side and this was reduced to ~1 µm for the focused beam. Beam sizes (FWHM) of 12–16 µm, transmission efficiencies of 25–45% and intensity gain factors, compared with the non‐focused beam, of about 2000 were obtained in the 7–14 keV energy range for an incoming beam of 0.5 × 2 mm (vertical × horizontal). As a practical application, an As K‐edge µ‐XANES study of cucumber root and hypocotyl was performed to determine the As oxidation state in the different plant parts and to identify a possible metabolic conversion by the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号