首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
Iron sulfides are attractive anode materials for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to their high theoretical capacities, low cost, and eco‐friendliness. However, their real application is greatly hindered by the rapid capacity fading caused by the large volume changes and sluggish kinetics of iron sulfides during the charge and discharge processes. Combining with carbonaceous materials and tuning the structure at nanoscale are essential to address this issue. Here, a facile hydrothermal method coupled with a carbonization process is developed to synthesize a nano‐micro hybrid porous structure, which is composed of Fe7S8 nanoparticles embedded in nitrogen‐doped carbon framework (Fe7S8@NC‐PS). This hierarchical sphere is constructed by interconnected 2D nanowalls. The as‐prepared Fe7S8@NC‐PS electrodes reveal excellent rate capability and cycling stability in LIBs and SIBs. The remarkable electrochemical properties are attributed to the porous nano‐micro hybrid architecture and the high conductivity and structural stability of the nitrogen‐doped carbon framework.  相似文献   

2.
《Physica B: Condensed Matter》2005,355(1-4):222-230
CdS thin films have been deposited from aqueous solution by photochemical reactions. The solution contains Cd(CH3COO)2 and Na2S2O3, and pH is controlled in an acidic region by adding H2SO4. The solution is illuminated with light from a high-pressure mercury-arc lamp. CdS thin films are formed on a glass substrate by the heterogeneous nucleation and the deposited thin films have been subjected to high-energy Si ion irradiations. Si ion irradiation has been performed with an energy of 80 MeV at fluences of 1×1011, 1×1012, 1×1013 and 1×1014 ions/cm2 using tandem pelletron accelerator. The irradiation-induced changes in CdS thin films are studied using XRD, Raman spectroscopy and photoluminescence. Broadening of the PL emission peak were observed with increasing irradiation fluence, which could be attributed to the band tailing effect of the Si ion irradiation. The lattice disorder takes place at high Si ion fluences.  相似文献   

3.
Raman spectroscopy was used to study the radiation damage of fluorapatite single crystals and sinters. Krypton and iodine ion irradiations were performed at high energies (∼1 MeV amu−1) for fluences ranging between 1 × 1011 and 5 × 1013 cm−2. Evolution of the symmetric stretching mode of the PO43− tetrahedral building blocks (strongest Raman mode observed at 965 cm−1) versus ion fluence was investigated. After irradiation, this peak decreases in intensity and a second broader peak appears at lower wavenumber. The well‐resolved peak has been assigned to the crystalline phase, and the broader one to the amorphous phase. The integrated intensity ratios of these two peaks versus fluence are in good agreement with the damage fractions determined by X‐ray diffraction (XRD). Fits of the amorphous fraction versus fluence show that the amorphization mechanisms is dominated by a single‐impact process for iodine ions and by a double‐impact process for krypton ions in the case of single crystals and sinters. For both irradiations, complete amorphization could not be obtained. The amorphous fraction saturates at a maximum value of 88% for sinters and 72% for single crystals. This is attributed to a recrystallization effect which is more important in single crystals than in sinters. For both types of samples, the crystalline peak shifts slightly to a lower wavenumber with fluence, and then shifts back to its initial value for an amorphous fraction larger than 60%. This feature is attributed to a stress relaxation, as shown in the XRD data, which is accompanied by a decrease of the crystalline peak full‐width at half‐maximum. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we rationally designed an efficient template‐free synthetic strategy to fabricate hierarchical mesoporous hollow ZnMn2O4 sub‐microspheres (HZSMs) constructed entirely from nanoparticle (NP) building blocks of size ≈15 nm. The well‐known inside‐out Ostwald ripening process was tentatively proposed to shed light on the formation mechanism of the mesoporous hollow nano‐/microarchitecture. In favor of the intrinsic structural advantages, these resulting HZSMs exhibited superior electrochemical lithium‐storage performance with high specific capacity, excellent cyclability, and good rate capability when evaluated as an anode material for advanced Li‐ion batteries (LIBs). The excellent electrochemical performance should be reasonably ascribed to the porous and hollow structure of the unique HZSMs with nanoscale subunits, which reduced the diffusion length for Li+ ions, improved the kinetic process and enhanced the structural integrity with sufficient void space for tolerating the volume variation during the Li+ insertion/extraction. These results further revealed that the as‐prepared mesoporous HZSMs would be a promising anode for high‐performance LIBs.  相似文献   

5.
ABSTRACT

Reduced graphene oxide (rGO) films can be employed as ion strippers in an accelerator. They show some advantages with respect to the graphite foils, due to their high thermal and electrical conductivity, low density, high mechanical resistance and high stability. Thin graphene oxide (GO) films with a sub-micron thickness have been synthesized and transformed into reduced GO (rGO) by ion beam irradiations. Physical characterizations of the pristine and ion irradiated GO films have been performed. Measurements of stripping efficiency have been carried out by using helium, lithium, carbon and oxygen ion beams. The rGO stripper films demonstrate a significantly high charge production, comparable to that of the graphite films but with the advantage of a longer lifetime.  相似文献   

6.
We report the structural and tribological characterization of nanostructured CNx thin films produced by the deposition of a supersonic carbon cluster beam assisted by nitrogen ion bombardment. The influence of the deposition parameters on the chemical composition and structure of the films has been systematically studied by X-ray photoelectron spectroscopy, elastic recoil detection analysis, transmission electron microscopy and atomic force microscopy. Depending on the deposition parameters, the films show a structure ranging from amorphous to disordered graphitic with interlinked planes. Nitrogen content depends on the nitrogen ion kinetic energy. The films have a very low density with a high surface roughness. Friction measurements at the nanoscale show a correlation between nitrogen content and mechanical properties of the system. PACS 61.46-w  相似文献   

7.
针对未来先进核能装置候选结构材料在高温和应力等条件下抗辐照性能的评价与快速筛选的需求,基于兰州重离子研究装置( HIRFL ) 可提供的离子束流条件,设计制作了国内第一套高温应力材料载能离子辐照装置。该装置由束流扫描及探测系统、高温系统、应力系统、真空冷却系统和远程控制系统等5 部分组成,可以同时提供高温和拉/ 压应力下材料的离子束均匀辐照件,温区覆盖了室温至1 200 °C范围,拉/ 压应力范围为0 ~1176 N,x-y 方向均匀扫描面积可大于40 mmx40 mm。利用该装置,已经成功进行了多次高温和应力条件下载能离子辐照先进核能装置候选材料的实验研究,并取得了初步成果。In order to expedite the evaluation of properties of irradiated materials and the selection of candidate materials for future nuclear energy systems, we developed a specific ion irradiation equipment installed on the Heavy Ion Research Facility of Lanzhou ( HIRFL ) for materials under high temperature and stress. This equipment consists of ion beam scanning and detector system, high temperature load system, stress load system, water cooling system as well as telecommunication and control system. It can supply a wide range of temperature (from room temperature to 1 200 °C ) and stress ( pull / push from 0 to 1 176 N) simultaneously for materials under ion irradiation. The x-y scanning area with high uniformity is larger than 40 mm40 mm. This is the first suit of ion irradiation equipment made in China that can be used to study co-operating effects of high temperature and stress in an irradiated material. It has been successfully used several times for materials irradiations under high temperatures and stress, which proved that the new equipment has very good performances in experiments.  相似文献   

8.
The effects of 75-keV Ar and 100-keV Kr ion irradiations of 72-nm thin DC-sputtered permalloy (Ni81Fe19) films on Si(100) wafers were studied at fluences of up to 1016 ions/cm2. The changes of the structural and magnetic properties were measured via X-ray diffraction, Rutherford backscattering spectroscopy, and magneto-optical Kerr effect. The irradiations increase the lattice constant and improve the crystallinity of the samples. They induce also strong changes of the magnetic polarisation and the coercive field for increasing ion fluence. The hysteresis loops suggest that, with increasing ion fluence, the reversal of the magnetisation changes gradually from rotation-dominated in the as-deposited films to domain-wall-motion dominated at the highest ion fluences. The results are compared with those obtained for Ni-, Cr-and Xe-ion irradiated permalloy films.  相似文献   

9.
Silicon carbide is an interesting material for GEN IV fission reactor projects because of its excellent properties. However, these properties will be altered under extreme conditions such as irradiation because of accumulation of damage. Mechanisms playing a role in defect formation require further studies in the case of high energy heavy ion irradiations. In this work a silicon carbide single crystal slice has been implanted with 20 MeV Au ions and probed by using Raman spectrometry. The resulting Raman spectra recorded as a function of depth clearly show a damaged zone, in which the width is in agreement with the projected range of the incident ions (Rp) calculated by using SRIM code. In this area, three damaged zones have been brought to light because of the high spatial resolution of the Raman spectrometry technique. The existence of these zones is discussed with regard to the different energy loss regimes of the implanted ions such as the electronic and nuclear ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The optical properties of ethylene vinyl acetate (EVA) film have been studied. The effects of gamma irradiations on the optical spectrum of EVA films have been investigated using spectrophotometric measurements of reflectance and transmittance in the wavelength range 200–1100 nm. The absorption spectra were recorded in the UV–vis region for the unirradiated and irradiated films (from 0 to 50 kGy). Optical constants such as refractive index (n), extinction coefficient (K), and complex dielectric constant have been determined, as well as the optical dispersion parameters and high frequency dielectric constants. A large dependence of the fundamental optical constants on the irradiation dose was noticed. On irradiation, a higher refractive index was obtained as compared with that for unirradiated film. The dispersion parameters, such as E 0 (single‐oscillator energy), E d (dispersive energy), and M ?1 and M ?3 (moments), are discussed in terms of the single‐oscillator Wemple–DiDomenico model.  相似文献   

11.
简要介绍了高能重离子在金属材料中引起辐照效应的主要理论 ,特别是与电子能损引起的缺陷产生与演化、离子潜径迹形成、辐照相变以及各向异性塑性形变等效应相应的理论描述.Experimental results showed that, for high energy heavy ion irradiations, electronic energy loss could play a dominant role in damage process in solid materials. In order to explain the experimental phenomena and results, a series of theoretical models based on Coulomb explosion or thermal spike mechanisms have been proposed. In the present paper, more attention was paid to theoretical expressions of high energy heavy ion irradiation induced effects in metallic materials ...  相似文献   

12.
The multipurpose portable ultra‐high‐vacuum‐compatible chamber described in detail in this article has been designed to carry out grazing‐incidence X‐ray scattering techniques on the BM25‐SpLine CRG beamline at the ESRF. The chamber has a cylindrical form, built on a 360° beryllium double‐ended conflate flange (CF) nipple. The main advantage of this chamber design is the wide sample temperature range, which may be varied between 60 and 1000 K. Other advantages of using a cylinder are that the wall thickness is reduced to a minimum value, keeping maximal solid angle accessibility and keeping wall absorption of the incoming X‐ray beam constant. The heat exchanger is a customized compact liquid‐nitrogen (LN2) continuous‐flow cryostat. LN2 is transferred from a storage Dewar through a vacuum‐isolated transfer line to the heat exchanger. The sample is mounted on a molybdenum support on the heat exchanger, which is equipped with a BORALECTRIC heater element. The chamber versatility extends to the operating pressure, ranging from ultra‐high vacuum (<10?10 mbar) to high pressure (up to 3 × 103 mbar). In addition, it is equipped with several CF ports to allocate auxiliary components such as capillary gas‐inlet, viewports, leak valves, ion gun, turbo pump, etc., responding to a large variety of experiment requirements. A movable slits set‐up has been foreseen to reduce the background and diffuse scattering produced at the beryllium wall. Diffraction data can be recorded either with a point detector or with a bi‐dimensional CCD detector, or both detectors simultaneously. The system has been designed to carry out a multitude of experiments in a large variety of environments. The system feasibility is demonstrated by showing temperature‐dependence grazing‐incidence X‐ray diffraction and conductivity measurements on a 20 nm‐thick La0.7Ca0.3MnO3 thin film grown on a SrTiO3(001) substrate.  相似文献   

13.
The microstructural and mechanical properties of hot-pressed Si3N4 ceramics after Si+ ion bombardent and annealing in N2 atmosphere have been investigated as a function of the ion fluence and the annealing temperature. The irradiations were carried out at target temperatures of about 80 K and 450 K with ion energies of 0.5 MeV and 1.0 MeV. In all cases the fluence range was subdivided into two regimes: a low-fluence regime with improved microhardness and fracture toughness, and a high-fluence regime with an absolute degradation of these properties. The transition fluence was found to strongly depend on the ion energy and implantation temperature. This property transition coincides with a microstructural transition from a highly damaged, but still crystalline material, to the formation of a buried amorphous layer. The amorphization results in a strong volume swelling which causes a closure of surface flaws. The latter process significantly enhances the fracture strength of the implanted material. Thermal relaxation of the modified mechanical properties was found to occur at temperatures above 800° C. The relationships between the ion-induced changes of the mechanical properties and the microstructural modifications will be discussed.  相似文献   

14.
We systematically study medium‐range structures including more than three neighboring atoms around iron ions (Fe2+ and Fe3+) in soda‐lime glass samples with low iron oxide concentrations (MFe2O3) and a wide number ratio of Fe2+ to all iron ions (Fe2+nFe). The precise medium‐range structures around iron ions in glass have not yet been revealed because of a lack of the appropriate measurement methods. To avoid this problem, we used element‐specific nuclear resonant inelastic scattering (NRIS) with synchrotron X‐rays to observe the vibrations of iron ions (57Fe). The vibrations are related to medium‐range structures with more than three neighboring atoms and to the potential asymmetry and the coordination environment, around iron ions. The NRIS method has high sensitivity and can measure over a wide concentration range. Linear combination fitting of the X‐ray absorption fine structure spectra, which measures only the first neighbors but is a faster than using the NRIS method, was also used additionally. A systematically produced set of glasses with 0.015–5 wt% MFe2O3 and 0–0.85 Fe2+nFe was measured with these methods. It was found that the soda‐lime glass possessed two different medium‐range structures with different iron ion valences (~2+ or ~3+), which were determined by the Fe2+nFe, and that these structures were generated during production of the glass. Moreover, these medium‐range structures were the same from 0.015 to 5 wt% MFe2O3.  相似文献   

15.
16.
UV‐C emitting nanoscale scintillators can be used to sensitize cancer cells selectively against X‐rays during radiation therapy, due to the lethal DNA lesions caused by UV‐C photons. Unfortunately, nanoscale particles (NPs) show decreased UV‐C emission intensity. In this paper, the influence of different Nd3+ concentrations on the UV‐C emission of micro‐ and nanoscale LuPO4:Pr3+ is investigated upon X‐ray irradiation and vacuum UV excitation (160 nm). Co‐doped LuPO4 results in increased UV‐C emission independent of excitation source due to energy transfer from Nd3+ to Pr3+. The highest UV‐C emission intensity is observed for LuPO4:Pr3+,Nd3+(1%,2.5%) upon X‐ray irradiation. Finally, LuPO4 NPs co‐doped with different dopant concentrations are synthesized, and the biological efficacy of the combined approach (X‐rays and UV‐C) is assessed using the colony formation assay. Cell culture experiments confirm increased cell death compared to X‐rays alone due to the formation of UV‐specific DNA damages, supporting the feasibility of this approach.  相似文献   

17.
A combined experimental and theoretical study is presented to understand the novel observed nucleation and early evolution of Ag filaments on β‐Ag2MoO4 crystals, driven by an accelerated electron beam from an electronic microscope under high vacuum. The growth process, chemical composition, and the element distribution in these filaments are analyzed in depth at the nanoscale level using field‐emission scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) with energy‐dispersive spectroscopy (EDS) characterization. To complement experimental results, chemical stability, structural and electronic aspects have been studied systematically using first‐principles electronic structure theory within a quantum theory of atoms in molecules (QTAIM) framework. The Ag nucleation and formation on β‐Ag2MoO4 are a result of structural and electronic changes of the AgO4 tetrahedral cluster as a constituent building block of β‐Ag2MoO4, consistent with Ag metallic formation. The formation of Ag filament transforms the β‐Ag2MoO4 semiconductor from n‐ to p‐type concomitant with the appearance of Ag defects.  相似文献   

18.
To obtain direct evidence of the formation of the Ni–Mo–S phase on NiMo/Al2O3 catalysts under high‐pressure hydrodesulfurization conditions, a high‐pressure EXAFS chamber has been constructed and used to investigate the coordination structure of Ni and Mo species on the catalysts sulfided at high pressure. The high‐pressure chamber was designed to have a low dead volume and was equipped with polybenzimidazole X‐ray windows. Ni K‐edge k3χ(k) spectra with high signal‐to‐noise ratio were obtained using this high‐pressure chamber for the NiMo/Al2O3 catalyst sulfided at 613 K and 1.1 MPa over a wide k range (39.5–146 nm?1). The formation of Ni–Mo and Mo–Ni coordination shells was successfully proved by Ni and Mo K‐edge EXAFS measurement using this chamber. Interatomic distances of these coordination shells were almost identical to those calculated from Ni K‐edge EXAFS of NiMo/C catalysts sulfided at atmospheric pressure. These results support the hypothesis that the Ni–Mo–S phase is formed on the Al2O3‐supported NiMo catalyst sulfided under high‐pressure hydrodesulfurization conditions.  相似文献   

19.
Nanofluidics encompasses a wide range of advanced approaches to study charge and mass transport at the nanoscale. Modern technologies allow us to develop and improve artificial nanofluidic platforms that confine ions in a way similar to single-ion channels in living cells. Therefore, nanofluidic platforms show great potential to act as a test field for theoretical models. This review aims to highlight ionic Coulomb blockade (ICB)—an effect that is proposed to be the key player of ion channel selectivity, which is based upon electrostatic exclusion limiting ion transport. Thus, in this perspective, we focus on the most promising approaches that have been reported on the subject. We consider ion confinements of various dimensionalities and highlight the most recent advancements in the field. Furthermore, we concentrate on the most critical obstacles associated with these studies and suggest possible solutions to advance the field further.  相似文献   

20.
The effect of swift heavy ion irradiation on ferromagnetic metallic glasses Fe40Ni38Mo4B18 and Fe78Si9B13 has been studied. The ion beams used are 100 MeV 127I and 180 MeV 197Au. The specimens were irradiated at fluences ranging from 3 × 1012 to 1.5 × 1014 ions/cm2. The irradiations have been carried out at temperatures 100 and 300 K. The magnetic moments are sensitive towards the irradiation conditions such as irradiation temperature and stopping power of incident ion beam. The irradiation-induced effects have been monitored, by using Mössbauer spectroscopy. The modifications in magnetic anisotropy and hyperfine magnetic field distributions, as an effect of different irradiation temperature as well as different stopping power have been discussed. After irradiation, all the samples remain amorphous and magnetic anisotropy considerably changes from its original in-plane direction. The results show enhancement in magnetic anisotropy in the specimen irradiated at 100 K, as compared to that of irradiated at 300 K. It is expected that at low temperature, the stresses produced in the material would remain un-annealed, compared to the samples irradiated at room temperature and therefore, the modification in magnetic anisotropy would be enhanced. A distribution of hyperfine magnetic field, of the samples irradiated at low temperature, show a small but distinct peak at ~?11 Tesla, indicating Fe-B pairing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号