首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2015,15(11):1397-1401
Capacitive deionization (CDI) is the next generation of water desalination and softening technology by using relatively low capacitive current of electrochemical double layer. Among various carbon-based materials used for making electrode, reduced graphene oxide (rGO) has been intensively studied due to its excellent electrical conductivity and high surface area. Although Hummer method for making graphene oxide (GO) and rGO is a simple process, it remains some impurities in inherent GO and rGO which affect negatively to the CDI performance. In this work, we successfully prepared ultra purified GO and rGO by modifying Hummer method in order to remove entirely excess elements degrading the CDI performance. The electrosorption capacity of ultra purified rGO is considerably better than that of previous rGO, and maximum removal achieves 3.54 mg g−1 at applied voltage of 2.0 V. Thus, this result could be comparable to other researches in CDI process.  相似文献   

2.
Reduced graphene oxide (rGO) is a two-dimensional material, which is attracting increasing attention due to its special properties. It can be obtained by laser or ion beam irradiations of pristine graphene oxide (GO). It shows high mechanical resistance, considerable electric and thermal conductivity. All these rGO characteristics together with the high number of molecular species that can be embedded between its layers, make graphene oxide a potential material for electronic sensors or efficient support on which conductive strips, condensers, and micrometric electronic devices can be designed. In particular, as it is described in this paper, it is possible to carry out high spatial resolution lithography in GO by using a focused laser or micro ion beam in order to design macro, micro, and submicron geometrical structures. The use of the reduced graphene oxide for the laser and ion beam fabrication of electrical resistances and capacitances is presented.  相似文献   

3.
In this paper, we are investigating the Raman and photoluminescence properties of reduced graphene oxide sheets (rGO). Moreover, graphene oxide (GO) sheets are synthesized using Hummer’s method and further reduced into graphene sheets using D-galactose. Both GO and rGO are characterized by UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Thermogravimetric (TGA) analysis. Raman analysis of rGO shows the restoration of graphitic domains in GO after reduction. The photoluminescence of rGO showed emission in the UV region which is blue shifted along with luminescent quenching as compared to GO. This blue shift and quenching in photoluminescence arises due to the newly formed crystalline sp2 clusters in rGO which created percolation pathways between the sp2 clusters already present.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(3):1174-1181
The reduction of graphene oxide (GO) to graphene (rGO) was achieved by using 20 kHz ultrasound in l-ascorbic acid (l-AA, reducing agent) aqueous solutions under various experimental conditions. The effects of ultrasound power, ultrasound pulse mode, reaction temperature, pH value and l-AA amount on the rates of rGO formation from GO reduction were investigated. The rates of rGO formation were found to be enhanced under the following conditions: high ultrasound power, long pulse mode, high temperature, high pH value and large amount of l-AA. It was also found that the rGO formation under ultrasound treatment was accelerated in comparison with a conventional mechanical mixing treatment. The pseudo rate and pseudo activation energy (Ea) of rGO formation were determined to discuss the reaction kinetics under both treatment. The Ea value of rGO formation under ultrasound treatment was clearly lower than that obtained under mechanical mixing treatment at the same condition. We proposed that physical effects such as shear forces, microjets and shock waves during acoustic cavitation enhanced the mass transfer and reaction of l-AA with GO to form rGO as well as the change in the surface morphology of GO. In addition, the rates of rGO formation were suggested to be affected by local high temperatures of cavitation bubbles.  相似文献   

5.
Graphene and graphene derivatives, including graphene oxide (GO) and reduced GO (rGO), have attracted remarkable attention in different fields due to their unique electronic, thermal, and mechanical properties, whereas the fluorescence property is rarely been studied. This paper reports on metal-enhanced fluorescence Au@SiO2 composite nanoparticles adsorbed graphene oxide nanosheets, where the silica-shell is used to control the distance between gold-core and fluorophore GO, and a positively charged polyelectrolyte poly(allylamine hydrochloride) (PAH) is used to adsorb the negatively charged silica-shell and GO by layer-by-layer assembly (LbL) approach. The silica-shell around the 80 nm gold-core can be well-controlled by ending the reaction at different times. Various analytical techniques were applied to characterize the morphology and optical characters of the as-prepared particles. A more than three-fold increase of the fluorescence intensity of GO was obtained.  相似文献   

6.
《Current Applied Physics》2018,18(8):879-885
Several studies have been done on physiochemical properties of thin films of graphene materials, but less on their mechanical properties. The mechanical properties such as tensile and storage modulus of films of graphene oxide (GO), different reduced graphene oxides (rGO), functionalised reduced graphene oxide (frGO) and a few layers graphene (graphene) were analysed in this study. During syntheses processes, a range of variations occurs due to different reducing agents and functionalising components used; this affects or changes the mechanical properties of the materials. In addition, it has become vital to comprehend the mechanical properties of these films as the potential applications such as sensor and electrodes demand extended life cycles or lifetime. It has been found that the ultimate tensile strength (UTS), tensile modulus, and storage modulus vary across all the samples that highly depend on nature/efficiency of reducing agent used, amount of impurities such as oxygen functional groups and defect density such as discrepancies/holes in the aromatic structure. The highest UTS and modulus have been identified with a few layers graphene and with hydroiodic acid reduced GO among the rGOs. The frGO shows almost similar properties to that of graphene.  相似文献   

7.
A novel concept based on the use of solutions containing already qualified crystalline antimony-doped tin oxide SnO2:Sb (ATO) nanoparticles has been developed. ATO nanoparticles are decorated by reduced graphene oxide (rGO) through a hydrothermal synthesis method. The electrical and optical properties of the graphene oxide films are investigated systematically. The sheet resistance (R ) of the ATO–rGO films decreases with the increase in the rGO content in the precursor solution. The R can be decreased after the ATO–rGO films annealing in the air for 1 h and can be further decreased by depositing Au on the surface of the films. The optimum property of the ATO–rGO film shows that the R is 80 Ω/□ and the transmittance is about 70 %. The ATO–rGO films are used as the anode of the organic solar cells. The anode film impact on the performance of the devices is studied. Finally, the power conversion efficiency (PCE) of the device based on the poly-(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blended is 1.85 %, and the PCE of the device based on the poly-benzo[1,2-b:4,5-b′] dithio-phene thieno[3,4-b] thiophene:PCBM blended is 3.4 %.  相似文献   

8.
In this paper, we report the sono-synthesis of reduced graphene oxide (rGO) using polyethyleneimine (PEI), and its performance for ammonia vapour detection at room temperature. Graphene oxide (GO) and reduced graphene oxide (rGO) were prepared by sonication method by using low-frequency ultrasound under ambient condition and films were deposited by Doctor Blade method. The rGO, which has vapour accessible structure showed a good sensing response with a minimum detection limit of 1 ppm and the detection range from 1 ppm to 100 ppm. The sensing response was found to be 2% at 1 ppm and 34% at 100 ppm of ammonia and the developed sensor operated at room temperature. The sensor displays a response time of 6 s and a recovery time of 45 s towards 100 ppm of ammonia vapour. The source for the highly sensitive, selective and stable detection of ammonia with negligible interference from other vapours is discussed and reported. We believe reduced graphene oxide (rGO) could potentially be used to manufacture a new generation of low-power portable ammonia sensors.  相似文献   

9.
In this paper, a novel strategy for the fabrication of reduced graphene oxide (rGO)/Cu8S5/polypyrrole (PPy) composite nanosheets with Cu8S5 nanoparticles and PPy layer anchored on the surface of rGO as peroxidase‐like nanocatalyst is reported. During the synthesis, graphene oxide (GO)/CuO composite nanosheets are prepared first and used as templates, then the sulfuration of CuO and polymerization of pyrrole are accompanied with the reduction of GO, resulting in ternary rGO/Cu8S5/PPy composite nanosheets. The synthesized Cu8S5 nanoparticles with a diameter in the range from tens to hundreds of nanometers are dispersed within PPy decorated rGO nanosheets. The resultant ternary rGO/Cu8S5/PPy composite nanosheets exhibit a higher peroxidase‐like catalytic activity toward the oxidation of 3,3′,5,5′‐tetramethylbenzidine in the presence of H2O2 than GO/CuO and rGO/CuS composite nanosheets, revealing a synergistic effect on their activity. The as‐prepared rGO/Cu8S5/PPy platform provides a simple colorimetric approach for the detection of H2O2 and phenol with a high sensitivity. This work offers a new way for the fabrication of rGO‐based nanocomposite with superior enzyme‐like activity, which displays great potential applications in biocatalysis and environmental monitoring.  相似文献   

10.
This study is the first to explore the possibility of utilizing CuCr LDH decorated on reduced graphene oxide (rGO) and graphene oxide (GO) as sonophotocatalysts for the degradation of dimethyl phthalate (DMP). CuCr LDH and its nanocomposites were successfully fabricated and characterized. Scanning electron microscopy (SEM) along with high-resolution transmission electron microscope (HRTEM) both evidenced the formation of randomly oriented nanosheet structures of CuCr LDH coupled with thin and folded sheets of GO and rGO. The impact of diverse processes on the degradation efficiency of DMP in the presence of the so-prepared catalysts was compared. Benefiting from the low bandgap and high specific surface area, the as-obtained CuCr LDH/rGO represented outstanding catalytic activity (100 %) toward 15 mg L−1 of DMP within 30 min when subjected to light and ultrasonic irradiations simultaneously. Radical quenching experiments and visual spectrophotometry using an O-phenylenediamine revealed the crucial role of hydroxyl radicals compared to holes and superoxide radicals. Overall, outcomes disclosed that CuCr LDH/rGO is a stable and proper sonophotocatalyst for environmental remediation.  相似文献   

11.
The reduced graphene oxide (rGO) incorporated ZnO thin films were fabricated by dip-coating method. The Raman and FT-IR spectra of 0.075 wt% incorporated composite film showed reduction of GO in composite film. The transmittanceProd. Type: FTP spectra have shown that rGO incorporation increase the visible light absorption of ZnO thin film while the calculated band gaps of samples were decreased from 3.28 to 3.25 eV by increasing the rGO content. The linear trend of IV curve suggests an ohmic contact between ZnO and rGO. Besides, it was found that by increasing the rGO content, the electrical resistivity was decreased from 4.32×102 Ω cm for pure ZnO film to 2.4×101 Ω cm for 0.225 wt% rGO incorporated composite film. The composite photodetectors not only possessed a desirable UV photosensitivity, but also the response time of optimum sample containing 0.075 wt% rGO was reduced to about one-half of pure ZnO thin film. Also, the calculated signal to noise (SNR) showed that highly conductive rGO in composite thin films facilitate the carrier transportation by removing the trapping centers. The mechanism of photoresponsivity improvement of composite thin films was proposed by carrier transportation process.  相似文献   

12.
A facile refluxing strategy in aqueous solution was engaged to synthesize ultrashort rice-like CuO nanorods/reduced graphene oxide (CuO-NRs/rGO) composite. The result of the high-resolution transmission electron microscopy shows that the as-synthesized rice-like CuO nanorods have a uniform size of about 8 nm in width and 28 nm in length and are homogenously dispersed on rGO nanosheets. The CuO nanorods are uniformly dispersed and immobilized by the graphene nanosheets reduced from GO. The resultant CuO-NRs/rGO composite as anode material for lithium-ion batteries displays better electrochemical properties than those of pure CuO-NRs and rGO nanosheets. The high reversible capacity and good stability can be ascribed to the presence of rGO nanosheets.  相似文献   

13.
A mechanical-activation-assisted polyol method for efficient preparation of high-performance rod-like LiMnPO4 composite is developed. The nanosized [Mn3(PO4)2·8H2O + Li3PO4]/graphene oxide (GO) precursors are prepared via a mechano-chemical liquid-phase activation–assisted technique from LiH2PO4 and manganese powder. LiMnPO4/reduced graphene oxide (rGO) samples are obtained by polyol process in boiling triethylene glycol (TEG) and then followed with pyrolytic carbon coating to prepare the LiMnPO4/C/rGo nanocomposite. The characterized results prove that well-crystallized LiMnPO4 nanorods can be successfully synthesized by polyol processing. The LiMnPO4 nanorods have a large percentage of highly oriented (020) facets, which provide a high pore density for Li-ion insertion/extraction. Both rGO modification and further carbon coating significantly improve the conductivity and reduce the charge-transfer resistance. The optimized LiMnPO4/C/rGO composite delivers good electrochemical performance.  相似文献   

14.
A density functional theory (DFT) study of graphene synthesis from graphite oxidation and exfoliation is presented. The calculated DFT results for O adsorption predict CO as a most stable bond on the graphene oxide (GO) sheet. The obtained exfoliation energy for the graphene and the GO are 143 and ∼70 mJ/m2 that verify easier exfoliation of the graphite oxide compared with the graphite. Furthermore, the DFT results show that for decreasing the exfoliation energy of the GO at least two layers of the graphite should be oxidized during the oxidation process.  相似文献   

15.
We report the use of the spray pyrolysis method to design self‐assembled isotropic ternary architectures made up of reduced graphene oxide (GO), functionalized multiwalled carbon nanotubes, and nickel oxide nanoparticles for cost‐effective high‐performance supercapacitor devices. Electrodes fabricated from this novel ternary system exhibit exceptionally high capacitance (2074 Fg?1) due to the highly conductive network, synergistic link between GO and carbon nanotubes and achieving high surface area monodispersed NiO decorated rGO/CNTs composite employing the liquid crystallinity of GO dispersions. To further assess the practicality of this material for supercapacitor manufacture, we assembled an asymmetric supercapacitor device incorporating activated carbon as the anode. The asymmetric supercapacitor device showed remarkable capacity retention (>96%), high energy density (23 Wh kg?1), and a coulombic efficiency of 99.5%.  相似文献   

16.
We report the influence of electron‐beam (E‐beam) irradiation on the structural and physical properties modification of monolayer graphene (Gr), reduced graphene oxide (rGO) and graphene oxide (GO) with ultradispersed diamond (UDD) forming novel hybrid composite ensembles. The films were subjected to a constant energy of 200 keV (40 nA over 100 nm region or electron flux of 3.9 × 1019 cm−2s−1) from a transmission electron microscope gun for 0 (pristine) to 20 min with an interval of 2.5 min continuously – such conditions resemble increased temperature and/or pressure regime, enabling a degree of structural fluidity. To assess the modifications induced by E‐beam, the films were analyzed prior to and post‐irradiation. We focus on the characterization of hierarchical defects evolution using in situ transmission electron microscopy combined with selected area electron diffraction, Raman spectroscopy (RS) and Raman mapping techniques. The experiments showed that the E‐beam irradiation generates microscopic defects (most likely, interstitials and vacancies) in a hierarchical manner much below the amorphization threshold and hybrids stabilized with UDD becomes radiation resilient, elucidated through the intensity, bandwidth, and position variation in prominent RS signatures and mapping, revealing the defects density distribution. The graphene sheet edges start bending, shrinking, and generating gaps (holes) at ~10–12.5 min owing to E‐beam surface sputtering and primary knock‐on damage mechanisms that suffer catastrophic destruction at ~20 min. The microscopic point defects are stabilized by UDD for hybrids in the order of GO > rGO ≥ Gr besides geometric influence, i.e. the int erplay of curvature‐induced (planar vs curved) energy dispersion/absorption effects. Furthermore, an attempt was made to identify the nature of defects (charged vs residual) through inter‐defect distance (i.e. LD). The trends of LD for graphene‐based hybrids with E‐beam irradiation implies charged defects described in terms of dangling bonds in contrast to passivated residual or neutral defects. More importantly, they provided a contrasting comparison among variants of graphene and their hybrids with UDD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
以六水合氯化镍、七水合硫酸钴、氧化石墨烯(GO)和赤磷为原料,利用原位水热法,在不添加任何表面活性剂的情况下,合成了磷化钴镍/还原氧化石墨烯(NiCoP/rGO)纳米复合材料,并通过XRD、SEM、TEM、IR、Raman等对该复合材料进行了表征.结果表明,所得复合材料由NiCoP纳米颗粒和还原氧化石墨烯片层结构组成,NiCoP纳米颗粒尺寸大约为20 nm,均匀分布在rGO片层结构表面上,同时探讨了复合材料的形成过程.另外,复合材料的吸附脱除实验表明,所得复合材料对多种染料都具有非常好的吸附作用,因此,在污水处理方面有较大的应用价值.  相似文献   

18.
Mahalingam  Savisha  Abdullah  Huda  Shaari  Sahbudin  Muchtar  Andanastuti 《Ionics》2016,22(12):2487-2497

A platinum/reduced graphene oxide (Pt/rGO) nanocomposite acting as a counter electrode (CE) was fabricated using a chemical bath deposition method for In2O3-based dye-sensitized solar cell (DSSC) via sol-gel technique. The report analyzes the morphological and electrochemical impedance spectroscopy of the annealing Pt/rGO films at 350, 400, and 450 °C. Micrograph images obtained from field emission scanning electron microscopy demonstrated the annealed films are highly porous. The energy-dispersive X-ray results show that the carbon atoms were homogeneously distributed on the film annealed at 400 °C. A good photovoltaic performance was exhibited with high photocurrent density of 8.1 mA cm−2 and power conversion efficiency (η) of 1.68 % at the Pt/rGO CE annealed at 400 °C. The employed electrochemical impedance spectroscopy analysis quantifies that the Pt/rGO films annealed at 400 °C provide more efficient charge transfer with the lowest effective recombination rate and high electron life time, hence improving the performance of Pt/rGO CE.

  相似文献   

19.
We report on a simple and facile synthesis route for the sulfur/graphene oxide composite via ultrasonic mixing of the nano-sulfur and graphene oxide aqueous suspensions followed by a low-temperature heat treatment. High-resolution transmission and scanning electronic microscopy observations revealed the formation of a highly porous structure consisting of sulfur with uniform graphene oxide coating on its surface. The resulting sulfur/graphene oxide (S/GO) composite exhibited high and stable specific discharge capacities of 591 mAh g?1 after 100 cycles at 0.1 C and good rate capability. This enhanced electrochemical performance could be attributed to the effective confining the polysulfides dissolution and accommodation of the volume changes during the Li-S electrochemical reaction by the functional groups on the graphene oxide coating layer. Furthermore, the highly developed porous structure of S/GO composite favors the enhanced ion transport and electrolyte diffusion.  相似文献   

20.
The porous WO3/reduced graphene oxide (rGO) composite films are prepared on indium–tin oxide (ITO) glass by sol-gel method. The mixture sol combines peroxotungstic acid solution with rGO dispersion reduced by ethylene glycol (EG). The excessive EG and other organic additives are subsequently removed by annealing, which leads to the formation of porous structure. Compared with pure WO3 film, WO3/rGO composite film shows improved electrochromic performance because of enhanced double insertion/extraction of ions and electrons. It realizes a large optical modulation (64.2 % at 633 nm), fast switching speed (9.5 s for coloration and 4.5 s for bleaching), good cycling stability as well as reversibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号