首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the crystal structures of both title compounds, [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]nickel(II) [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]zinc(II) perchlorate [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]zinc(II) methanol trisolvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one‐half of a chloride anion and a methanol solvent molecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3‐bis(2‐hydroxybenzylidene)‐2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methylpropane‐1,3‐diamine]. In the analogous ZnII compound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent molecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, molecules with Δ–Δ and Λ–Λ pairs co‐exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.  相似文献   

2.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

3.
In the title compound, [Zn(C2H3N)(C16H21N3O)](ClO4)2·H2O, the ZnII ion is coordinated by two pyridyl N atoms, one amine N atom, and an ethanol O atom from the N,N′,N′′,O‐tetra­dentate 2‐[bis­(2‐pyridylethyl)amino]­ethanol donor ligand. The fifth coordination site is filled by an acetonitrile N atom, and there is one solvent water mol­ecule in the asymmetric unit. The 2+ charge of the cationic portion of the complex is balanced by two perchlorate counter‐anions.  相似文献   

4.
The structure of the title compound, [Cu2(C12H24N4O2)(C3H4N2)2(CH4O)2](ClO4)2 or [Cu2(dmoxpn)(HIm)2(CH3OH)2](ClO4)2, where dmoxpn is the dianion of N,N′‐bis­[3‐(dimethyl­amino)prop­yl]oxamide and HIm is imidazole, consists of a centrosymmetric trans‐oxamidate‐bridged copper(II) binuclear cation, having an inversion centre at the mid‐point of the central C—C bond, and two perchlorate anions. The CuII atom has square‐pyramidal coordination geometry involving two N atoms and an O atom from the dmoxpn ligand, an N atom from an imidazole ring, and an O atom from a methanol mol­ecule. The crystal structure is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds and imidazole π–π stacking inter­actions to form a three‐dimensional supra­molecular array.  相似文献   

5.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

6.
The title complex, [Cu(ClO4)2(C9H13N5O)(CH3OH)], was synthesized from a methanolysis reaction of N‐(methylpyridin‐2‐yl)cyanoguanidine (L3) and copper(II) perchlorate hexahydrate in a 1:1 molar ratio. The CuII ion is six‐coordinated by an N3O3 donor set which confers a highly distorted and asymmetric octahedral geometry. Three N‐donor atoms from the chelating 1‐(methoxymethanimidoyl)‐2‐(pyridin‐2‐ylmethyl)guanidine (L3m) ligand and one O atom from the methanol molecule define the equatorial plane, with two perchlorate O atoms in the apical sites, one of which has a long Cu—O bond of 2.9074 (19) Å. The dihedral angle between the five‐ and six‐membered chelate rings is 8.21 (8)°. Two molecules are associated into a dimeric unit by intermolecular N—H...O(perchlorate) hydrogen bonds. Additionally, the weakly coordinated perchlorate anions also link adjacent [Cu(ClO4)2(L3m)(CH3OH)] dimers by hydrogen‐bonding interactions, resulting in a two‐dimensional layer in the (100) plane. Further C—H...O hydrogen bonds link the two‐dimensional layers along [100] to generate a three‐dimensional network.  相似文献   

7.
Sodium in dry methanol reduces 2‐cyanopyridine in the presence of 3‐piperidylthiosemicarbazide and produces 2‐pyridine‐formamide‐3‐piperidylthiosemicarbazone, HAmpip. Complexes with zinc(II), cadmium(II), and mercury(II) have been prepared and characterized by elemental analyses and spectroscopic techniques. In addition, the crystal structures of [Zn(Ampip)2], [Zn(Ampip)(Oac)]2, [Cd(HAmpip)Cl2]·(CH3)2SO, [Cd(HAm‐pip)Br2] · (CH3)2SO, [Cd(HAmpip)I2]·(CH3)2SO, [Cd(Ampip)2] and [Hg(HAmpip)Br2]·(CH3)2SO have been solved. Coordination of the anionic and neutral thiosemicarbazone ligand is via the pyridyl nitrogen, imine nitrogen and thiolato/thione sulfur atom, respectively. In [Zn(Ampip)(OAc)]2 one of the bridging acetato ligands has monodentate coordination and the other bridges in a bidentate manner. 113Cd NMR studies were carried out on the [Cd(HAmpip)X2](X = Cl, Br or I) and [Cd(Ampip)(OAc)]2 complexes. The 113Cd chemical shifts are affected by the halogen and range from 411 to 301 ppm, and the spectrum of [Cd(Ampip)(OAc)]2 shows two signals at 450 and 251 ppm. The 199Hg NMR spectrum of [Hg(HAmpip)Cl2] also is discussed.  相似文献   

8.
The title compound, [Zn(SiF6)(C12H8N2)2]·CH3OH, contains a neutral heteroleptic tris‐chelate ZnII complex, viz. [Zn(SiF6)(phen)2] (phen is 1,10‐phenanthroline), exhibiting approximate molecular C2 point‐group symmetry. The ZnII cation adopts a severely distorted octahedral coordination. As far as can be ascertained, the title complex represents the first structurally characterized example of a ZnII complex bearing a bidentate‐bound hexafluorosilicate ligand. A density functional theory study of the isolated [Zn(SiF6)(phen)2] complex was undertaken to reveal the influence of crystal packing on the molecular structure of the complex. In the crystal structure, the methanol solvent molecule forms a hydrogen bond to one F atom of the hexafluorosilicate ligand. The hydrogen‐bonded assemblies so formed are tightly packed in the crystal, as indicated by a high packing coefficient (74.1%).  相似文献   

9.
Four ZnII/CdII coordination polymers (CPs) based on 2‐(4‐carboxy‐phenyl)imidazo[4, 5‐f]‐1, 10‐phenanthroline (HNCP) and different derivatives of 5‐R‐1, 3‐benzenedicarboxylate (5‐R‐1, 3‐BDC) (R = NO2, H, OH), [Zn(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 1 ), [Cd(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 2 ), [Zn(HNCP)(1, 3‐BDC)(H2O)2]n ( 3 ), and {[Zn(HNCP)(5‐OH‐1, 3‐BDC)(H2O) · H2O}n ( 4 ) were synthesized under hydrothermal conditions. Compounds 1 – 4 were determined by elemental analyses, IR spectroscopy, and single‐crystal and powder X‐ray diffraction. Compounds 1 and 2 are isomorphous, presenting a 4‐connected uninodal (4, 4)‐sql 2D framework with threefold interpenetration, which are further extended into the three‐dimensional (3D) supramolecular architecture through π ··· π stacking interactions between the aryl rings of 5‐NO2‐1, 3‐BDC. Compared to compound 1 , 3 is obtained by using different reaction temperatures and metal‐ligand ratios, generating a 3D framework with –ABAB– fashion via π ··· π stacking interactions. Compound 4 is a 1D chain, which is further extended into a 3D supramolecular net by hydrogen bonds and π ··· π stacking interactions. The thermogravimetric and fluorescence properties of 1 – 4 were also explored.  相似文献   

10.
A novel 3D polymeric heteropolynuclear sodium(I) lead(II) complex containing different ligands, [NaPb(ClO4)(en)(NO2)2] was synthesized and characterized by elemental analysis and IR, and 1H‐, 13C‐, and 207Pb‐NMR spectroscopy. The single‐crystal X‐ray data of [NaPb(ClO4)(en)(NO2)2]n established that the complex is a three‐dimensional polymer, [(en)Pb(μ3‐ONO)2Na(μ3‐ONO)2Na(μ‐O2ClO2)Na]n. The Pb and Na atoms have four‐ and eight‐coordinate geometry, respectively. The lone pair of electrons at the PbII atom is ‘stereochemically active’.  相似文献   

11.
The stoichiometric reaction of 1,10‐phenanthroline (phen), imino­di­acetic acid (IDA‐H2) and Cu(ClO4)2 in a H2O–CH3OH (2:1) solution yields μ‐imino­diacetato‐2:1κ4O,N,O′:O′′‐tris(1,10‐phenanthroline)‐1κ4N,N′;2κ2N,N′‐dicopper(II) diperchlorate methanol solvate, [Cu2(C4H5NO4)(C12H8N2)3](ClO4)2·CH3OH. The IDA ligand bridges the two CuII ions via a carboxyl­ate group and uses one further N and an O atom of the second carboxylate group to complete a fac‐tridentate coordination at one Cu centre. A phen ligand completes a distorted square‐pyramidal coordination at this metal atom, although there is weak coordination by a perchlorate O atom at a sixth position. The second Cu centre has a distorted trigonal–bipyramidal coordination to two phen moieties and a carboxyl­ate O atom.  相似文献   

12.
A five-coordinate copper complex with the tripod ligand tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb) and 4-hydroxycinnamate, with the composition [Cu(Mentb)(4-hydroxycinnamate)](ClO4)?·?0.5DMF, was synthesized and characterized by means of elemental analyses, electrical conductivities, thermal analyses, IR, and UV. The crystal structure of the copper complex has been determined by single-crystal X-ray diffraction, and shows that the CuII atom is bonded to a tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb) ligand and a 4-hydroxycinnamate through four N atoms and one O atom, giving a distorted trigonal-bipyramidal coordination geometry (τ?=?0.78), with approximate C3 molecular symmetry. Cyclic voltammograms of the copper complex indicate a quasireversible Cu+2/Cu+ couple. Electron spin resonance data confirm the trigonal–bipyramidal structure and indicate g ?<?g with a very small value of A (57?×?10?4?cm?1).  相似文献   

13.
《中国化学会会志》2018,65(7):893-899
A novel dinuclear Zn(II) complex with the chemical formula [Zn2(L)(OCH3)] has been synthesized by a bis(salamo)‐type tetraoxime ligand based on 3‐bromo‐5‐chlorosalicylicaldehyde, and characterized by elemental analyses, IR, UV–vis, and fluorescent spectra, and single‐crystal X‐ray diffraction analysis. All the Zn(II) atoms are pentacoordinated by N2O2 donor atoms from the (L)3− unit and one oxygen atom from one μ2‐methoxyl group. The Zn(II) (Zn1 and Zn4) atoms have distorted square pyramidal geometries (τ1 = 0.458, τ4 = 0.388), whereas the Zn2 and Zn3 atoms adopt trigonal bipyramidal (τ2 = 0.675, τ3 = 0.550) geometries. The Zn(II) complex is self‐assembled by intermolecular C H···O interactions to form an infinite three‐dimensional supramolecular structure. Interestingly, the intermolecular C H···π interactions in the Zn(II) complex is involved not in the formation of three‐dimensional structures but rather in the formation of the 0D dimer structure. Meanwhile, the optical properties of the Zn(II) complex were also measured and are discussed.  相似文献   

14.
The N‐functionalized macrocyclic ligand 2,13‐bis(1‐naphthalenylmethyl)‐5,16‐dimethyl‐2,6,13,17‐tetraazatricyclo(14,4,01.18,07.12)docosane (L3) and its copper(II) complex were prepared. The crystal structure of [Cu(L3)](ClO4)2·2CH3CN was determined by single‐crystal X‐ray diffraction at 150 K. The copper atom, which lies on an inversion centre, has a square planar arrangement and the complex adopts a stable trans‐III configuration. The longer distance [2.081(2) Å] for Cu–N(tertiary) compared to 2.030(3) Å for Cu–N(secondary) may be due to the steric effect of the attached naphthalenylmethyl group on the tertiary nitrogen atom. Two perchlorate ions are weakly attached to copper in axial sites and are further connected to the ligand of the cation through NH ··· O hydrogen bonds [N ··· O 3.098 Å]. IR and UV/Vis spectroscopic properties are also described.  相似文献   

15.
Five mono‐nuclear silver (I) complexes with 6,7‐dicyanodipyridoquinoxaline ligand, namely {[Ag(DPEphos)(dicnq)]NO3}2 · CH3OH ( 1 ), [Ag(DPEphos)(dicnq)]BF4 · CH3OH ( 2 ), [Ag(XANTphos)(dicnq)]CF3SO3 ( 3 ), {[Ag(XANTphos)(dicnq)]NO3}2 ( 4 ), and [Ag(XANTphos)(dicnq)]ClO4 · CH2Cl2 ( 5 ) {DPEphos = bis[2‐(diphenylphosphanyl)phenyl]ether, dicnq = 6,7‐dicyanodipyridoquinoxaline, XANTphos = 9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)xanthene} were characterized by X‐ray diffraction, IR, 1H NMR, 31P NMR, fluorescence spectra, and terahertz time‐domain spectra (THz‐TDS). In the five complexes the AgI, which is coordinated by two kinds of chelating ligands, adopts four‐coordinate modes to generate mono‐nuclear structures. The C–H ··· π interactions lead to formation of a 1D infinite chain for complexes 2 and 3 . The crystal packing of complexes 1 and 5 reveal that they form 3D supermolecular network by several pairs of C–H ··· π interactions. The emissions of these complexes are attributed to ligands‐centered [π–π*] transition based on both of the P‐donor and N‐donor ligands.  相似文献   

16.
Two N3O2 pentadentate ligands, BMPP and BPPP, were prepared for synthesizing highly efficient nickel catalysts, [Ni(BMPP)(CH3CN)](ClO4)2 ( 1 ) and [Ni(BPPP)(CH3CN)](BPh4)(ClO4) ( 2 ), for thia‐Michael addition of thiophenols to α,β‐enones. X‐ray structures of 1 and 2 revealed that a labile CH3CN molecule was bound to the nickel center of the catalysts. ESI‐MS spectroscopy indicated that thiolate replaced the bound CH3CN molecule and coordinated to the nickel center during the catalytic cycle.  相似文献   

17.
A new oxamido‐bridged dicopper(II) complex formulated as [Cu2(ndpox)(bpy)(CH3OH)2]‐ (ClO4), where H3ndpox is N‐(2‐hydroxy‐5‐nitrophenyl)‐N′‐[3‐(diethylamino)propyl]oxamide; and bpy represents 2,2′‐bipyridine, was synthesized and structurally characterized using X‐ray single‐crystal diffraction and other methods. In the molecule, the endo‐ and the exo‐copper(II) ions bridged by the cis ‐ndpox3− ligand are in {N3O2} and {N2O3} square‐ pyramidal environments, respectively. There is a three‐dimensional hydrogen bonding network dominated by O‐H···O and C‐H···O interactions in the crystal. The reactivity toward DNA/protein bovine serum albumin (BSA) revealed that the complex could interact with herring sperm DNA (HS‐DNA) through the intercalation mode, and effectively quench the intrinsic fluorescence of BSA via a static process. Cytotoxicity studies suggest that the complex displays selective cancer cell antiproliferative activity. The present investigation confirmed that the combined effects of both electron‐withdrawing and hydrophobic groups on the bridging ligand in the dicopper(II) complex systems can increase DNA/BSA‐binding ability and in vitro anticancer activity.  相似文献   

18.
In the title compound, [Pt(C18H15P)(C28H28P2S)]­(ClO4)2·­C3H6O or [Pt(PPh3)(PSP)](ClO4)2·CH3COCH3, where PSP is the potentially tridentate chelate ligand bis(2‐di­phenyl­phosphinoethyl) sulfide, all three donor groups of the PSP ligand are coordinated to the central Pt atom, with Pt—P = 2.310 (1) Å and Pt—S = 2.343 (1) Å. The fourth coordination site is occupied by the P donor of the tri­phenyl­phosphine ligand [Pt—P = 2.289 (1) Å]. The complex cation has exact mirror symmetry, with the S atom, the Pt atom and the P atom of the PPh3 ligand in the mirror plane. The Pt atom has a distorted square‐planar coordination geometry. A π–π interaction is present between the phenyl rings of the PPh3 ligand and the terminal –PPh2 group of the PSP chelate.  相似文献   

19.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

20.
Metal Complexes with N2O2S2 Donor Set. Synthesis and Characterization of the Cobalt(II), Nickel(II), and Copper(II) Complexes of a 15‐ and a 16‐Membered Bis(2‐hydroxyethyl) Pendant Macrocyclic Ligand The macrocyclic ligands 6, 10‐bis(2‐hydroxyethyl)‐7, 8, 9, 11, 17, 18‐hexahydro‐dibenzo‐[e, n][1, 4, 8, 12]‐dithiadiaza‐cyclopentadecine ( 1 ) (L1) and 5, 13‐bis(2‐hydroxyethyl)‐7, 8, 9, 10, 16, 17, 18, 19, 20‐nonahydro‐dibenzo‐[g, o][1, 9, 5, 13]‐dithiadiaza‐cyclohexadecine (L4) have been prepared. They form the stable complexes [CoL1(‐H)CoL1](ClO4)3 ( 2 ), [NiL1](ClO4)2·MeOH ( 3 ), Λ‐[CuL1](ClO4)2·MeOH ( 4a ) and rac‐[CuL1](ClO4)2·MeOH ( 4b ), [NiL4](ClO4)2 ( 5 ), and [CuL4](ClO4)2 ( 6 ). The compounds 1 to 6 have been characterized by standard methods and single‐crystal X‐ray diffraction. In the complexes 2 to 6 the metal atoms are octahedrally coordinated by the N2O2S2 donor set of the ligands. L1 and L4 are folded herein along the N···M···S‐ and the N···M···N′‐axes, respectively. This results at the metal atom in a allcis‐configuration for the complexes of L1 and a trans‐N2cis‐O2cis‐S2‐configuration for the complexes of L4. The cobalt(II) complex 2 is a dimer, bridged by a rather short hydrogen bridge of 2.402(12)Å length. The copper(II) complexes of L1 and L4 differ with respect to the Jahn‐Teller‐distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号