首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the controlled synthesis of inorganic micro‐ and nanostructures with hollow interiors has attracted considerable attention because of their widespread potential applications. A feasible method for synthesizing Li3VO4 by a template‐free, solution synthesis of single‐crystalline microboxes with well‐defined non‐spherical morphologies has been reported. This study provides the useful information to produce other hollow structure materials to the broad audience of readers. The formation of hollow structure and the influence of raw materials have been presented. The thus‐synthesized Li3VO4 exhibited significantly improved conductivity, rate capability, and cycling life compared to commercial graphite, synthesized Li4Ti5O12, and previously reported Li3VO4.  相似文献   

2.
Although many two‐dimensional (2D) hybrid nanostructures are being prepared, the engineering of epitaxial 2D semiconductor hetero‐nanostructures in the liquid phase still remains a challenge. The preparation of 2D semiconductor hetero‐nanostructures by epitaxial growth of metal sulfide nanocrystals, including CuS, ZnS and Ni3S2, is achieved on ultrathin TiS2 nanosheets by a simple electrochemical approach by using the TiS2 crystal and metal foils. Ultrathin CuS nanoplates that are 50–120 nm in size and have a triangular/hexagonal shape are epitaxially grown on TiS2 nanosheets with perfect epitaxial alignment. ZnS and Ni3S2 nanoplates can be also epitaxially grown on TiS2 nanosheets. As a proof‐of‐concept application, the obtained 2D CuS–TiS2 composite is used as the anode in a lithium ion battery, which exhibits a high capacity and excellent cycling stability.  相似文献   

3.
Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self‐cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule‐assisted hydrothermal method to synthesize β‐phase Ni(OH)2 peony‐like complex nanostructures with second‐order structure nanoplate structure. The novel β‐Ni(OH)2 nanostructures exhibit high‐power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)2, as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures.  相似文献   

4.
Core–shell or striped heteroatomic lanthanide metal–organic framework hierarchical single crystals were obtained by liquid‐phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation‐controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom‐up strategy toward the design of hierarchical molecular systems, offering high‐throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three‐dimensional) microscale spatial coding is established, providing potential applications in anti‐counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices.  相似文献   

5.
Fiber‐like π‐conjugated nanostructures are important components of flexible organic electronic and optoelectronic devices. To broaden the range of potential applications, one needs to control not only the length of these nanostructures, but the introduction of diverse functionality with spatially selective control. Here we report the synthesis of a crystalline‐coil block copolymer of oligo(p‐phenylenevinylene)‐b‐poly(2‐vinylpyridine) (OPV5b‐P2VP44), in which the basicity and coordinating/chelating ability of the P2VP segment provide a landscape for the incorporation of a variety of functional inorganic NPs. Through a self‐seeding strategy, we were able to prepare monodisperse fiber‐like micelles of OPV5b‐P2VP44 with lengths ranging from 50 to 800 nm. Significantly, the exposed two ends of OPV core of these fiber‐like micelles remained active toward further epitaxial deposition of OPV5b‐PNIPAM49 and OPV5b‐P2VP44 to generate uniform A‐B‐A and B‐A‐B‐A‐B segmented block comicelles with tunable lengths for each block. The P2VP domains in these (co‐)micelles can be selectively decorated with inorganic and polymeric nanoparticles as well as metal oxide coatings, to afford hybrid fiber‐like nanostructures. This work provides a versatile strategy toward the fabrication of narrow length dispersity continuous and segmented π‐conjugated OPV‐containing fiber‐like micelles with the capacity to be decorated in a spatially selective way with varying functionalities.  相似文献   

6.
The preparation of 3D hierarchical nanostructures by a simple and versatile strategy of self‐assembly of dopamine (DA) and phosphotungstic acid (PTA) is described. The size and morphology of the hierarchical nanostructures could be simply controlled by varying the ratio of the two components, their concentrations, and the pH of the initial Tris‐HCl solution. The self‐assembly of the flowerlike microspheres has been found to involve a two‐stage growth process. Moreover, use of the hierarchical nanostructures as a possible carrier for an anticancer drug in chemotherapy has been explored. The nanostructures showed an intriguing pH‐dependent release behavior, making them promising for applications in biomedical science.  相似文献   

7.
Well‐dispersed ammonium aluminum carbonate hydroxide (NH4‐Dw) and γ‐AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic‐liquid‐assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4‐Dw to γ‐AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4‐Dw and γ‐AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4‐Dw and γ‐AlOOH nanostructures, which could be divided into cationic‐ or anionic‐dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic‐dominant regime, the ionic liquids mainly showed dispersion effects for the NH4‐Dw nanostructures, whereas the anionic‐dominant model could induce the self‐assembly of the γ‐AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as‐prepared NH4‐Dw and γ‐AlOOH nanostructures were converted into porous γ‐Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen‐adsorption analysis, the obtained γ‐Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption.  相似文献   

8.
The increasing use of lithium‐ion batteries (LIBs) in high‐power applications requires improvement of their high‐temperature electrochemical performance, including their cyclability and rate capability. Spinel lithium manganese oxide (LiMn2O4) is a promising cathode material because of its high stability and abundance. However, it exhibits poor cycling performance at high temperatures owing to Mn dissolution. Herein we show that when stoichiometric lithium manganese oxide is coated with highly doped spinels, the resulting epitaxial coating has a hierarchical atomic structure consisting of cubic‐spinel, tetragonal‐spinel, and layered structures, and no interfacial phase is formed. In a practical application of the coating to doped spinel, the material retained 90 % of its capacity after 800 cycles at 60 °C. Thus, the formation of an epitaxial coating with a hierarchical atomic structure could enhance the electrochemical performance of LIB cathode materials while preventing large losses in capacity.  相似文献   

9.
Carbon nanostructures with precisely controlled shapes are difficult materials to synthesize. A facet‐selective‐catalytic process was thus proposed to synthesize polymer‐linked carbon nanostructures with different shapes, covering straight carbon nanofiber, carbon nano Y‐junction, carbon nano‐hexapus, and carbon nano‐octopus. A thermal chemical vapor deposition process was applied to grow these multi‐branched carbon nanostructures at temperatures lower than 350 °C. Cu nanoparticles were utilized as the catalyst and acetylene as the reaction gas. The growth of those multi‐branched nanostructures was realized through the selective growth of polymer‐like sheets on certain indexed facets of Cu catalyst. The vapor–facet–solid (VFS) mechanism, a new growth mode, has been proposed to interpret such a growth in the steps of formation, diffusion, and coupling of carbon‐containing oligomers, as well as their final precipitation to form nanostructures on the selective Cu facets.  相似文献   

10.
Nitrogen and phosphorus co‐doped hierarchical micro/mesoporous carbon (N,P‐MMC) was prepared by simple thermal treatment of freeze‐dried okra in the absence of any other additives. The 0.96 wt % of N and 1.47 wt % of P were simultaneously introduced into the graphitic framework of N,P‐MMC, which also possesses hierarchical porous structure with mesopores centered at 3.6 nm and micropores centered at 0.79 nm. Most importantly, N,P‐MMC carbon exhibits excellent catalytic activity for electrocatalytic reduction of H2O2, resulting in a new strategy to construct non‐enzymatic H2O2 sensor. The N,P‐MMC‐based H2O2 sensor displays two linear detection range about 0.1 mM–10 mM (R2=0.9993) and 20 mM–200 mM (R2=0.9989), respectively. The detection limit is estimated to be 6.8 μM at a signal‐to‐noise ratio of 3. These findings provide insights into synthesizing functional heteroatoms doped porous carbon materials for biosensing applications.  相似文献   

11.
A promising family of mixed transition‐metal oxides (MTMOs) (designated as AxB3‐xO4; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non‐stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low‐cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro‐/nanostructures, along with their applications as electrode materials for lithium‐ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal–air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next‐generation electrochemical energy storage/conversion systems are also presented.  相似文献   

12.
The synthesis of ultrathin face‐centered‐cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal‐close‐packed (hcp) Au square sheets (AuSSs). The Pt‐layer growth results in a hcp‐to‐fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f‐oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures.  相似文献   

13.
We report an epitaxial growth technique for scalable production of hybrid sodium rare‐earth fluoride (NaLnF4) microcrystals, including NaYF4, NaYbF4, and NaLuF4 material systems. The single crystalline nature of the as‐synthesized products makes them strong upconversion emission. The freedom of combining a lanthanide activator (Er3+ or Tm3+) with a sensitizer (Yb3+) at various doping concentrations readily gives access to color multiplexing at the single‐particle level. Our kinetic and thermodynamic investigations on the epitaxial growth of core–shell microcrystals using NaLnF4 particle seeds suggest that within a certain size regime it is plausible to exert precise control over shell thickness and growth orientation under hydrothermal conditions.  相似文献   

14.
The oligonucleotide d(TX)9, which consists of an octadecamer sequence with alternating non‐canonical 7‐deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double‐stranded DNA through the formation of hydrogen‐bonded Watson–Crick base pairs. dsDNA with metal‐mediated base pairs was then obtained by selectively replacing W‐C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag+ ions, and its stability is significantly enhanced in the presence of Ag+ ions while its double‐helix structure is retained. Temperature‐dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)‐mediated base pairs. This strategy could become useful for preparing stable metallo‐DNA‐based nanostructures.  相似文献   

15.
We have studied the self‐assembly of the ABA triblock copolymer (P4VP‐b‐PS‐b‐P4VP) in dilute solution by using binary block‐selective solvents, that is, water and methanol. The triblock copolymer was first dissolved in dioxane to form a homogeneous solution. Subsequently, a given volume of selective solvent was added slowly to the solution to induce self‐assembly of the copolymer. It was found that the copolymer (P4VP43b‐PS366b‐P4VP43) tended to form spherical aggregate or bilayer structure when we used methanol or water as the single selective solvent, respectively. However, the aggregates with various nanostructures were obtained by using mixtures of water and methanol as the block‐selective solvents. The aggregate structure changed from sphere to rod, vesicle, and then to bilayer by changing water content in the block‐selective solvent from 0 to 100%. Moreover, it was found that the vesicle size could be well controlled by changing the copolymer content in the solution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1536–1545, 2008  相似文献   

16.
Directing self‐assembly processes out‐of‐equilibrium to yield kinetically trapped materials with well‐defined dimensions remains a considerable challenge. Kinetically controlled assembly of self‐synthesizing peptide‐functionalized macrocycles through a nucleation–growth mechanism is reported. Spontaneous fiber formation in this system is effectively shut down as most of the material is diverted into metastable non‐assembling trimeric and tetrameric macrocycles. However, upon adding seeds to this mixture, well‐defined fibers with controllable lengths and narrow polydispersities are obtained. This seeded growth strategy also allows access to supramolecular triblock copolymers. The resulting noncovalent assemblies can be further stabilized through covalent capture. Taken together, these results show that self‐synthesizing materials, through their interplay between dynamic covalent bonds and noncovalent interactions, are uniquely suited for out‐of‐equilibrium self‐assembly.  相似文献   

17.
Spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode candidate for the next‐generation high energy‐density lithium‐ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site‐selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd m structure. This site‐selective doping not only suppresses unfavorable two‐phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg‐doped LNMOs exhibit extraordinarily stable electrochemical performance in both half‐cells and prototype full‐batteries with novel TiNb2O7 counter‐electrodes. This work pioneers an atomic‐doping engineering strategy for electrode materials that could be extended to other energy materials to create high‐performance devices.  相似文献   

18.
Typically, the morphologies of the self‐assembled nanostructures from block copolymers are limited to spherical micelles, wormlike micelles and vesicles. Now, a new generation of materials with unique shape and structures, cylindrical soft matter particles (tubisomes), are obtained from the hierarchical self‐assembly of cyclic peptide‐bridged amphiphilic diblock copolymers. The capacity of obtained photo‐responsive tubisomes as potential drug carriers is evaluated. The supramolecular tubisomes pave an alternative way for fabricating polymeric tubular structures, and will expand the toolbox for the rational design of functional hierarchical nanostructures.  相似文献   

19.
A facile templated synthesis of functional nanocarbon materials with well‐defined spherical mesopores is developed using all‐organic porogenic precursors comprised of hairy nanoparticles with nitrogen‐rich polyacrylonitrile shells grafted from sacrificial cross‐linked poly(methyl methacrylate) cores (xPMMA‐g‐PAN). Such shape‐persistent all‐organic nanostructured precursors, prepared using atom transfer radical polymerization (ATRP), assure robust formation of template nanostructures with continuous PAN precursor matrix over wide range of compositions, and allow for removal of the sacrificial template through simple thermal decomposition. Carbon materials prepared using this method combine nitrogen enrichment with hierarchical nanostructure comprised of microporous carbon matrix interspersed with mesopores originating from sacrificial xPMMA cores, and thus perform well as CO2 adsorbents and as supercapacitor electrodes.  相似文献   

20.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号