首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metal sulfide‐carbon nanocomposite is a new class of anode material for sodium ion batteries, but its development is restricted by its relative poor rate ability and cyclic stability. Herein, we report the use of double‐helix structure of carrageenan–metal hydrogels for the synthesis of 3D metal sulfide (MxSy) nanostructure/carbon aerogels (CAs) for high‐performance sodium‐ion storage. The method is unique, and can be used to make multiple MxSy/CAs (such as FeS/CA, Co9S8/CA, Ni3S4/CA, CuS/CA, ZnS/CA, and CdS/CA) with ultra‐small nanoparticles and hierarchical porous structure by pyrolyzing the carrageenan–metal hydrogels. The as‐prepared FeS/CA exhibits a high reversible capacity and excellent cycling stability (280 mA h?1 at 0.5 A g?1 over 200 cycles) and rate performance (222 mA h?1 at 5 A g?1) when used as the anode material for sodium‐ion batteries. The work shows the value of biomass‐derived metal sulfide–carbon heterostuctures in sodium‐ion storage.  相似文献   

2.
Two‐dimensional (2D) copper‐based ternary and quaternary semiconductors are promising building blocks for the construction of efficient solution‐processed photovoltaic devices at low cost. However, the facile synthesis of such 2D nanoplates with well‐defined shape and uniform size remains a challenge. Reported herein is a universal template‐mediated method for preparing copper‐based ternary and quaternary chalcogenide nanoplates, that is, CuInS2, CuInxGa1?xS2, and Cu2ZnSnS4, by using a pre‐synthesized CuS nanoplate as the starting template. The various synthesized nanoplates are monophasic with uniform thickness and lateral size. As a proof of concept, the Cu2ZnSnS4 nanoplates were immobilized on a Mo/glass substrate and used as semiconductor photoelectrode, thus showing stable photoelectrochemical response. The method is general and provides future opportunities for fabrication of cost‐effective photovoltaic devices based on 2D semiconductors.  相似文献   

3.
Two‐dimensional (2D) copper‐based ternary and quaternary semiconductors are promising building blocks for the construction of efficient solution‐processed photovoltaic devices at low cost. However, the facile synthesis of such 2D nanoplates with well‐defined shape and uniform size remains a challenge. Reported herein is a universal template‐mediated method for preparing copper‐based ternary and quaternary chalcogenide nanoplates, that is, CuInS2, CuInxGa1−xS2, and Cu2ZnSnS4, by using a pre‐synthesized CuS nanoplate as the starting template. The various synthesized nanoplates are monophasic with uniform thickness and lateral size. As a proof of concept, the Cu2ZnSnS4 nanoplates were immobilized on a Mo/glass substrate and used as semiconductor photoelectrode, thus showing stable photoelectrochemical response. The method is general and provides future opportunities for fabrication of cost‐effective photovoltaic devices based on 2D semiconductors.  相似文献   

4.
A new prompt room temperature synthetic route to 2D nanostructured metal oxide–graphene‐hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ‐MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ‐MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ‐MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ‐MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ‐MnO2–RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO‐assisted solution‐based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials.  相似文献   

5.
Semiconducting nanosheets with microscale lateral size are attractive building blocks for the fabrication of electronic and optoelectronic devices. The phase‐controlled chemical synthesis of semiconducting nanosheets is of particular interest, because their intriguing properties are not only related to their size and shape, but also phase‐dependent. Herein, a facile method for the synthesis of phase‐pure, microsized, two‐dimensional (2D) CuSe nanosheets with an average thickness of approximately 5 nm is demonstrated. These hexagonal‐phased CuSe nanosheets were transformed into cubic‐phased Cu2?xSe nanosheets with the same morphology simply by treatment with heat in the presence of CuI cations. The phase transformation, proposed to be a template‐assisted process, can be extended to other systems, such as CuS and Cu1.97S nanoplates. Our study offers a new method for the phase‐controlled preparation of 2D nanomaterials, which are not readily accessible by conventional wet‐chemical methods.  相似文献   

6.
Although two‐dimensional (2D) metal oxide/sulfide hybrid nanostructures have been synthesized, the facile preparation of ultrathin 2D nanosheets in high yield still remains a challenge. Herein, we report the first high‐yield preparation of solution‐processed ultrathin 2D metal oxide/sulfide hybrid nanosheets, that is, Tix Ta1−x Sy Oz (x =0.71, 0.49, and 0.30), from Tix Ta1−x S2 precursors. The nanosheet exhibits strong absorbance in the near‐infrared region, giving a large extinction coefficient of 54.1 L g−1 cm−1 at 808 nm, and a high photothermal conversion efficiency of 39.2 %. After modification with lipoic acid‐conjugated polyethylene glycol, the nanosheet is a suitable photothermal agent for treatment of cancer cells under 808 nm laser irradiation. This work provides a facile and general method for the preparation of 2D metal oxide/sulfide hybrid nanosheets.  相似文献   

7.
The synthesis of ultrathin face‐centered‐cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal‐close‐packed (hcp) Au square sheets (AuSSs). The Pt‐layer growth results in a hcp‐to‐fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f‐oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures.  相似文献   

8.
Two‐dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost‐effective synthesis process for multi‐type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low‐temperature fabrication of scalable multi‐type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition‐metal hydroxides (Ni‐Co LDH, Ni‐Fe LDH, Co‐Fe LDH, and Ni‐Co‐Fe layered ternary hydroxides) through the rational employment of a green soft‐template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni‐Co LDH nanosheets exhibit a high specific capacitance of 1087 F g?1 at a current density of 1 A g?1, and excellent stability, with 103 % retention after 500 cycles. This strategy is facile and scalable for the production of high‐quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets.  相似文献   

9.
Uniform Ni3C nanodots dispersed in ultrathin N‐doped carbon nanosheets were successfully prepared by carburization of the two dimensional (2D) nickel cyanide coordination polymer precursors. The Ni3C based nanosheets have lateral length of about 200 nm and thickness of 10 nm. When doped with Fe, the Ni3C based nanosheets exhibited outstanding electrocatalytic properties for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). For example, 2 at % Fe (atomic percent) doped Ni3C nanosheets depict a low overpotential (292 mV) and a small Tafel slope (41.3 mV dec−1) for HER in KOH solution. An outstanding OER catalytic property is also achieved with a low overpotential of 275 mV and a small Tafel slope of 62 mV dec−1 in KOH solution. Such nanodot‐incorporated 2D hybrid structures can serve as an efficient bifunctional electrocatalyst for overall water splitting.  相似文献   

10.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

11.
Ultrathin two‐dimensional (2D) nanostructures have attracted increasing research interest for energy storage and conversion. However, tackling the key problem of lattice mismatch inducing the instability of ulreathin nanostructures during phase transformations is still a critical challenge. Herein, we describe a facile and scalable strategy for the growth of ultrathin nickel phosphide (Ni2P) nanosheets (NSs) with exposed (001) facets. We show that single‐layer functionalized graphene with residual oxygen‐containing groups and a large lateral size contributes to reducing the lattice strain during phosphorization. The resulting nanostructure exhibits remarkable hydrogen evolution activity and good stability under alkaline conditions.  相似文献   

12.
Transition‐metal phosphide nanowires were facilely synthesized by Ullmann‐type reactions between transition metals and triphenylphosphine in vacuum‐sealed tubes at 350–400 °C. The phase (stoichiometry) of the phosphide products is controllable by tuning the metal/PPh3 molar ratio and concentration, reaction temperature and time, and heating rate. Six classes of iron, cobalt, and nickel phosphide (Fe2P, FeP, Co2P, CoP, Ni2P, and NiP2) nanostructures were prepared to demonstrate the general applicability of this new method. The resulting phosphide nanostructures exhibit interesting phase‐ and composition‐dependent magnetic properties, and magnetic measurements suggested that the Co2P nanowires with anti‐PbCl2 structure show a ferromagnetic–paramagnetic transition at 6 K, while the MnP‐structured CoP nanowires are paramagnetic with Curie–Weiss behavior. Moreover, GC‐MS analyses of organic byproducts of the reaction revealed that thermally generated phenyl radicals promoted the formation of transition‐metal phosphides under synthetic conditions. Our work offers a general method for preparing one‐dimensional nanoscale transition‐metal phosphides that are promising for magnetic and electronic applications.  相似文献   

13.
A new two‐dimensional (2D) layered material, namely, titanium trisulfide (TiS3) monolayer, is predicted to possess novel electronic properties. Ab initio calculations show that the perfect TiS3 monolayer is a direct‐gap semiconductor with a bandgap of 1.02 eV, close to that of bulk silicon, and with high carrier mobility. More remarkably, the in‐plane electron mobility of the 2D TiS3 is highly anisotropic, amounting to about 10 000 cm2 V?1 s?1 in the b direction, which is higher than that of the MoS2 monolayer, whereas the hole mobility is about two orders of magnitude lower. Furthermore, TiS3 possesses lower cleavage energy than graphite, suggesting easy exfoliation for TiS3. Both dynamical and thermal stability of the TiS3 monolayer is examined by phonon‐spectrum calculation and Born–Oppenheimer molecular dynamics simulation. The desired electronic properties render the TiS3 monolayer a promising 2D atomic‐layer material for applications in future nanoelectronics.  相似文献   

14.
A surfactant‐free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single‐phase orthorhombic SnSe nanoplates in gram quantities. Individual nanoplates are composed of {100} surfaces with {011} edge facets. Hot‐pressed nanostructured compacts (Eg≈0.85 eV) exhibit excellent electrical conductivity and thermoelectric power factors (S2σ) at 550 K. S2σ values are 8‐fold higher than equivalent materials prepared using citric acid as a structure‐directing agent, and electrical properties are comparable to the best‐performing, extrinsically doped p‐type polycrystalline tin selenides. The method offers an energy‐efficient, rapid route to p‐type SnSe nanostructures.  相似文献   

15.
The direct synthesis of nanostructured electrode materials on three‐dimensional substrates is important for their practical application in electrochemical cells without requiring the use of organic additives or binders. In this study, we present a simple two‐step process to synthesize a stable core–shell structured cobalt sulfide/cobalt aluminum hydroxide nanosheet (LDH‐S) for pseudocapacitor electrode application. The cobalt aluminum layered double hydroxide (CoAl‐LDH) nanoplates were synthesized in basic aqueous solution with a kinetically‐controlled thickness. Owing to the facile diffusion of electrolytes through the nanoplates, thin CoAl‐LDH nanoplates have higher specific capacitance values than thick nanoplates. The as‐grown CoAl‐LDH nanoplates were transformed into core–shell structured LDH‐S nanosheets by a surface modification process in Na2S aqueous solution. The chemically robust cobalt sulfide (CoS) shell increased the electrochemical stability compared to the sulfide‐free CoAl‐LDH electrodes. The LDH‐S electrodes exhibited high electrochemical performance in terms of specific capacitance and rate capability with a galvanostatic discharge of 1503 F g?1 at a current density of 2 A g?1 and a specific capacitance of 91 % at 50 A g?1.  相似文献   

16.
《中国化学》2017,35(7):1043-1049
Lead titanate nanostructures with different phases and morphologies, layered hexagonal PbTiO2(CO3)0.3‐ (NO3)0.35(OH) nanosheets, pyrochlore Pb2Ti2O6 nanodendites, pre‐perovskite PbTiO3 nanofibres and perovskite PbTiO3 nanoplates, have been synthesized via a conventional hydrothermal route assisted with different concentrations of tetramethylammonium hydroxide (TMAH). X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high‐resolution TEM (HRTEM) were employed to characterize the phase, morphology and growth behavior of the synthesized samples. The results reveal that at low TMAH concentration the obtained samples are mainly of PbTiO2(CO3)0.3(NO3)0.35(OH) nanosheets. With the TMAH concentration increasing, the obtained samples change to pyrochlore Pb2Ti2O6 nanodendites, pre‐perovskite PbTiO3 nanofibres and perovskite PbTiO3 nanoplates in turn. With the basis of the experimental results, the phase‐ and morphology‐evolution mechanism of the lead titanate nanostructures is discussed by combining the analysis of the lattice structure feature and the properties of TMAH.  相似文献   

17.
Graphene analogues of TaS2 and TiS2 (3–4 layers), prepared by Li intercalation followed by exfoliation in water, were characterized. Nanocomposites of CdS with few‐layer TiS2 and TaS2 were employed for the visible‐light‐induced H2 evolution reaction (HER). Benzyl alcohol was used as the sacrificial electron donor, which was oxidized to benzaldehyde during the reaction. Few‐layer TiS2 is a semiconductor with a band gap of 0.7 eV, and its nanocomposite with CdS showed an activity of 1000 μmol h?1 g?1. The nanocomposite of few‐layer TaS2, in contrast, gave rise to higher activity of 2320 μmol h?1 g?1, which was attributed to the metallic nature of few‐layer TaS2. The amount of hydrogen evolved after 20 and 16 h for the CdS/TiS2 and CdS/TaS2 nanocomposites was 14833 and 28132 μmol, respectively, with turnover frequencies of 0.24 and 0.57 h?1, respectively.  相似文献   

18.
The amino acid arginine was used to modify the surface of graphene oxide nanosheets and then nickel‐substituted cobalt ferrite nanoparticles were supported on those arginine‐grafted graphene oxide nanosheets (Ni0.5Co0.5Fe2O4@Arg–GO). The prepared Ni0.5Co0.5Fe2O4@Arg–GO was characterized using flame atomic absorption spectroscopy, inductively coupled plasma optical emission spectrometry, energy‐dispersive spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, Raman spectroscopy, X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The application of Ni0.5Co0.5Fe2O4@Arg–GO as a catalyst was examined in a one‐pot tandem oxidative cyclization of primary alcohols with o ‐phenylenediamine to benzimidazoles under aerobic oxidation conditions. The results showed that 2‐phenylbenzimidazole derivatives were successfully achieved using Ni0.5Co0.5Fe2O4@Arg–GO nanocomposite catalyst via the one‐pot tandem oxidative cyclization strategy.  相似文献   

19.
Synthesizing 2D metal–organic frameworks (2D MOFs) in high yields and rational tailoring of the properties in a predictable manner for specific applications is extremely challenging. Now, a series of porphyrin‐based 2D lanthanide MOFs (Ln‐TCPP, Ln=Ce, Sm, Eu, Tb, Yb, TCPP=tetrakis(4‐carboxyphenyl) porphyrin) with different thickness were successfully prepared in a household microwave oven. The as‐prepared 2D Ln‐TCPP nanosheets showed thickness‐dependent photocatalytic performances towards photooxidation of 1,5‐dihydroxynaphthalene (1,5‐DHN) to synthesize juglone. Particularly, the Yb‐TCPP displayed outstanding photodynamic activity to generate O2? and 1O2. This work not only provides fundamental insights into structure designing and property tailoring of 2D MOFs nanosheets, but also pave a new way to improve the photocatalytic performance.  相似文献   

20.
Preparation of Ni2P by temperature‐programmed reduction (TPR) of a phosphate precursor is challenging because the P?O bond is strong. An alternative approach to synthesizing Ni2P, by reduction of nickel hexathiodiphosphate (Ni2P2S6), is presented. Conversion of Ni2P2S6 into Ni2P occurs at 200–220 °C, a temperature much lower than that required by the conventional TPR method (typically 500 °C). A sulfur‐containing layer with a thickness of about 4.7 nm, composed of tiny crystallites, was observed at the surface of the obtained Ni2P catalyst (Ni2P?S). This is a direct observation of the sulfur‐containing layer of Ni2P, or the so‐called nickel phosphosulfide phase. Both the hydrodesulfurization activity and the selective hydrogenation performance of Ni2P‐S were superior to that of the catalyst prepared by the TPR method, suggesting a positive role of sulfur on the surface of Ni2P‐S. These features render Ni2P‐S a legitimate alternative non‐precious metal catalyst for hydrogenation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号