首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pyrolysis and the flame retardancy of poly(butylene terephthalate) (PBT) containing aluminum diethylphosphinate (AlPi) and nanometric Fe2O3 were investigated using thermal analysis, evolved gas analysis (Thermogravimetry‐FTIR), flammability tests (LOI, UL 94), cone calorimeter measurements and chemical analysis of residue (FTIR). AlPi mainly acts as a flame inhibitor in the gas phase, through the release of diethylphosphinic acid. A small amount of Fe2O3 in PBT promotes the formation of a carbonaceous char in the condensed phase. The combination of 5 and 8 wt% AlPi, respectively, with 2 wt% metal oxides achieves V‐0 classification in the UL 94 test thanks to complementary action mechanisms. Using PBT/metal oxide nanocomposites shows a significant increase in the flame retardancy efficiency of AlPi in PBT and thus opens the route to surprisingly sufficient additive contents as low as 7 wt%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The known flame-retardant synergism between phosphorus-based additives and metal oxides, already used for petroleum-based plastics, has been extended to bio-based materials. The pyrolysis and the flame-retardancy properties of aluminium phosphinate (AlPi) in combination with nanometric iron oxide and antimony oxide on a poly(3-hydroxy-butyrate-co-3-hydroxyvalerate)/poly(butylene adipate-co-terephthalate) (PHBV/PBAT) blend were investigated. Better fire retardancy, ascribed to increases in intermediate char, favoured improvements in the UL 94 classification. Both the phosphorus and the nanofiller components participate simultaneously in the flame-retardancy mechanism: the first acting as flame inhibition in the gas phase, and the second promoting cross-linking in the solid phase. Redox reactions between iron oxide and the phosphinate additive were confirmed by XRD analysis and provided further evidence of the activity of metal compounds.  相似文献   

3.
Pyrolysis and fire behaviour of a phosphorus polyester (PET-P-DOPO) have been investigated. The glycol ether of the hydroquinone derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide was used as a reactive halogen-free flame retardant in PET-P-DOPO. PET-P-DOPO is proposed as an alternative to poly(butylene terephthalate) (PBT) with established halogen-free additives. It exhibits a high LOI (39.3%) and achieves V-0 classification in the UL 94 test. Three different mechanisms (flame inhibition, charring and a protection effect by the intumescent char) contribute to the flame retardancy in PET-P-DOPO and were quantified with respect to different fire risks. The fire load was reduced by 66% of the PBT characteristic. The reduction is the superposition of the relative reduction due to flame inhibition (factor 0.625) and charring (factor 0.545). The peak of heat release rate (pHRR) was reduced by 83% due to flame inhibition, charring and the protection properties of the char (factor 0.486). The strength of all three mechanisms is in the same order of magnitude. The intumescent multicellular structure enables the char to act as an efficient protection layer. PBT flame-retarded with aluminium diethylphosphinate was used as a benchmark to assess the performance of PET-P-DOPO absolutely, as well as versus the phosphorus content. PET-P-DOPO exhibits superior fire retardancy, in particular due to the additional prolongation of the time to ignition and increase in char yield. PET-P-DOPO is a promising alternative material for creating halogen-free flame-retarded polyesters.  相似文献   

4.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The fire retardancy mechanisms of aluminium diethylphosphinate in combination with melamine polyphosphate and zinc borate was analysed in glass-fibre reinforced polyamide 6,6. The influence of phosphorus compounds on the polyamide decomposition pathways was characterized using thermal analysis (TG), evolved gas analysis (TG-FTIR), and FTIR-ATR analysis of the residue. The Lewis acid-base interactions between the flame retardants, the amide unit, and the metal ions control the decomposition. The flammability (LOI, UL 94) and performance under forced-flaming conditions (cone calorimeter using different irradiations) were investigated. Fire residues were analysed with FTIR-ATR, SEM-EDX, and NMR. Aluminium phosphinate in polyamide 6,6 acts mainly by flame inhibition. Melamine polyphosphate shows some fuel dilution and a significant barrier effect. Using a combination of aluminium phosphinate and melamine polyphosphate results in some charring and a dominant barrier effect. These effects are improved in the presence of zinc borate due to the formation of boron-aluminium phosphates instead of aluminium phosphates.  相似文献   

6.
任杰  李建波 《高分子科学》2016,34(6):785-796
To minimize the loading level of the char-forming phosphorus based flame retardants in the poly(lactic acid) (PLA) with reduced flammability, we have developed the flame-retarded PLA nanocomposites by melt blending method incorporating organically modified montmorillonite (OMMT) and aluminium diethylphosphinate (AlPi) additives. The influence of AlPi and OMMT on flame retardancy and thermal stability of PLA was thoroughly investigated by means of the limiting oxygen index (LOI), UL94 test, cone calorimeter, X-ray diffraction (XRD), thermogravimetric analysis and scanning electronic microscopy (SEM). The experimental results show that the PLA/AlPi/OMMT system has excellent fire retardancy. The LOI value increases from 19% for pristine PLA to 28% for the flame-retarded PLA. Cone calorimeter analysis of the PLA/AlPi/OMMT exhibits a reduction in the peak heat release rate values by 26.2%. Thermogravimetric analysis and SEM of cone calorimeter residues indicate that OMMT significantly enhances the thermal stability, promotes char-forming and suppresses the melt dripping. The research of this study implies that the combining of the flame retardant and organoclay results in a synergistic effect. In addition, the flame-retarded PLA nanocomposite also exhibits notable increase in the impact strength and the elongation at break.  相似文献   

7.
《先进技术聚合物》2018,29(3):1068-1077
The effect of 1,3,5‐triglycidyl isocyanurate (TGIC) as a synergistic agent on the fire retardancy, thermal, and mechanical properties for polyamide 6/aluminium diethylphosphinate (PA6/AlPi) composites were investigated in detail by limiting oxygen index; vertical burning (UL‐94); cone calorimeter; thermal gravimetric analysis; rheological measurements; and the tests of tensile, flexural, and Izod impact strength. The morphologies and chemical compositions of the char residue were investigated by scanning electron microscopy, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectra. The results demonstrated that AlPi and TGIC exerted an evident synergistic effect for flame retardant PA6 matrix, and the PA6/AlPi/TGIC composites with the thickness of 1.6 mm successfully passed UL‐94 V‐0 rating with the limiting oxygen index value of 30.8% when the total loading amount of AlPi/TGIC with the mass fraction of 97:3 was 11 wt%. However, the samples failed to pass the UL‐94 vertical burning tests when AlPi alone is used to flame retardant PA6 matrix with the same loading amount. The thermal gravimetric analysis data revealed that the introduction of TGIC promoted the char residue formation at high temperature. The rheological measurement demonstrated that the incorporation of TGIC improved the storage modulus, loss modulus, and complex viscosity of PA6/AlPi/TGIC composites comparing with that of neat PA6 and PA6/AlPi composites due to the coupling reaction between TGIC and the terminal groups of PA6 matrix. The morphological structures of char residues demonstrated that TGIC benefited to the formation of more homogenous and integrated char layer with no defects and holes on the surface comparing with that of PA6/AlPi composites during combustion. The higher melt viscosity of composites and the integrated and sealed char layer effectively inhibited the volatilization of flammable gas into the combustion zone and then led to the reduction of the heat release. The results of mechanical properties revealed that the incorporation of TGIC enhanced the mechanical properties for PA6/AlPi/TGIC composites comparing with that of PA6/AlPi composites with the same loading amount of flame retardant caused by the chain extension effect of TGIC. As a result, the flame retardancy and mechanical properties of PA6/AlPi composites simultaneously enhanced due to the introduction of TGIC.  相似文献   

8.
A novel charring agent poly(p-propane terephthalamide) (PPTA) was synthesized by using terephthaloyl chloride and 1,3-propanediamine through solution polycondensation and it was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for ABS. The thermal degradation behaviour and flame retardancy were investigated, the results showed that PPTA could be effective as a charring agent, the flame retardancy of ABS and the mass of residues improved greatly with the addition of IFR. When the content of APP was 22.5 mass% and PPTA was 7.5 mass%, the limiting oxygen index (LOI) value of IFR-ABS system was found to be 32.4, and class V-0 of UL-94 test was passed. Moreover, the synergistic effects of two different adjuvants AlPi and MnO2 in IFR-ABS system have been studied.  相似文献   

9.
Effect of metallic oxides on flame retardancy and the thermal stability of styrene butadiene rubber (SBR) composites based on ammonium polyphosphate (APP) and pentaerythritol (PER) was studied by the limiting oxygen index (LOI), UL 94, the cone calorimeter tests, and thermogravimetry analysis (TGA), respectively. Scanning electron microscopy (SEM) and wide‐angle X‐ray diffraction (WAXD) were used to analyze the morphological structure and the component of the residue chars formed from the SBR composites accordingly. The addition of zirconium dioxide (ZrO2) at a loading of 3.4 phr could improve the UL 94 test rating of the composite to V‐0. The TGA data illustrated that the metallic oxides could enhance the thermal stability of the SBR/Intumescent flame retardant additives (IFRs) composites at high temperature and increase the residue. Cone calorimeter test gave much clear evidence that the incorporation of ZrO2 into SBR/IFRs composites resulted in the significant deduction of the heat release rate (HRR) values, and the SEM images showed that the char layers of the composites containing the metallic oxides became more compact. From the WAXD pattern, zirconium phosphate (ZrP2O7) may be formed by the reaction between ZrO2 and APP. Due to the addition of ZrO2 and the formation of ZrP2O7, the flame retardancy of the composite was improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Flame retardancy of bisphenol A polycarbonate (PC)/poly(butylene terephthalate) (PBT) blends was improved by the addition of resorcinol bis(diphenyl phosphate) (RDP) and poly(phenylene ether) (PPO). A PC/PBT blend at 70/30 weight ratio obtained a V‐0 rating by the addition of 10 wt% RDP and 10 wt% PPO. The combination of 5 wt% methyl methacrylate‐butadiene‐styrene tercopolymer (MBS) with 3 wt% ethylene‐butylacrylate‐glycidyl methacrylate tercopolymer (PTW) causes a remarkable increase in toughness of the PC/PBT/RDP blend while maintaining a high rigidity. A detailed investigation of the flame‐retardant action of PC/PBT/RDP and PC/PBT/RDP/PPO blends was performed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), TGA‐FTIR, temperature‐programmed pyrolysis/gas chromatography/mass spectrometry (TPPy/GC/MS), and scanning electron microscopy/energy dispersive spectrometer (SEM/EDS). The results demonstrate that RDP induces a higher char yield at ca. 450 °C and synchronously increases the thermal stability of the blend with PPO. The flame‐retardant role of RDP in the condensed phase was discerned from TGA, FTIR, and SEM/EDS of the residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A systematic series of flexible polyurethane foams (FPUF) with different concentrations of flame retardants, bis([dimethoxyphosphoryl]methyl) phenyl phosphate (BDMPP), and melamine (MA) or expandable graphite (EG) was prepared. The mechanical properties of the FPUFs were evaluated by a universal testing machine. The pyrolysis behaviors and the evolved gas analysis were done by thermogravimetric analysis (TGA) and TGA coupled with Fourier-transform infrared (TG-FTIR), respectively. The fire behaviors were studied by limiting oxygen index (LOI), UL 94 test for horizontal burning of cellular materials (UL 94 HBF), and cone calorimeter measurement. Scanning electronic microscopy (SEM) was used to examine the cellular structure's morphology and the postfire char residue of the FPUFs. LOI and UL 94 HBF tests of all the flame retarded samples show improved flame retardancy. BDMPP plays an essential role in the gas phase because it significantly reduces the effective heat of combustion (EHC). This study highlights the synergistic effect caused by the combination of BDMPP and EG. The measured char yield from TGA is greater than the sum of individual effects. No dripping phenomenon occurs during burning for FPUF-BDMPP-EGs, as demonstrated by the result of the UL 94 HBF test. EG performs excellently on smoke suppression during burning, as evident in the result of the cone calorimeter test. MA reduces the peak heat release rate (pHRR) significantly. The synergistic effect of the combination of BDMPP and EG as well as MA offers an approach to enhance flame retardancy and smoke suppression.  相似文献   

12.
In this work, 12‐tungestocobaltic acid based organic–inorganic hybrid material, [Bmim]6CoW12O40 (CoW) was synthesized and applied as a synergist in polypropylene (PP)/intumescent flame retardant (IFR) composites. The flame retardant properties were investigated by the limiting oxygen index (LOI), UL‐94 vertical burning test, thermal gravimetric analyzer (TGA), cone calorimeter and scanning electron microscopy (SEM) etc. The results showed that the PP composites with 16 wt% IFR and 1 wt% CoW achieves the UL‐94 V‐0 rating and gets a LOI value 28.0. However, only add no less than 25 wt% single IFR, can the PP composites obtain the UL‐94 V‐0 rating, which suggests that CoW has good synergistic effects on flame retardancy of PP/IFR composites. In addition, the SEM and cone calorimeter tests indicated the CoW improves the quality of char layer. The rate of char formation has been enhanced also because of the existence of CoW. It is the combination of a better char quality and a high rate of char formation promoted by CoW that results in the excellent flame retardancy of PP/IFR composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
An inorganic azo diphosphonate (INAZO), (KO)2(O)P-NN-P(O)(OK)2·4H2O, was synthesized and tested as a novel type of flame retardant additive for castor oil and oligomeric methylene diphenyl diisocyanate (PMDI) based two component polyurethane adhesive with or without using dolomite ((CaMg(CO3)2) as filler. Flammability according to UL 94 test and performance under forced-flaming conditions (cone calorimeter) were investigated at the additive loadings of 5, 10 and 20 wt %. It was shown that INAZO improves flame retardancy by significantly reducing heat release rate (HRR), maximum average rate of heat emission (MARHE) and total smoke release (TSR) values in comparison to CaMg(CO3)2 filled polyurethane adhesives. The macroscopic structure of the sample residues after cone calorimeter measurement was also analysed. The action mechanism of the developed INAZO flame retardant is suggested to be mainly in the condensed phase. UL 94 V-0 rating was achieved in the vertical burning test when 10 wt % loading of INAZO was used, whereas the reference flame retardant ammonium polyphosphate (APP) required a loading of 20 wt % to reach the V-0 classification.  相似文献   

15.
The effects of β‐cyclodextrin containing silicone oligomer(CDS), as a synergistic agent, on the flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites were studied by adding different amounts of CDS in intumescent flame retardants. The limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were utilized to evaluate the synergistic effects of CDS in the composites. It was found that after a little amount of CDS partially replaced a charring‐foaming agent (CFA) in IFR, LOI values of the composites were enhanced and they obtained a UL‐94 V‐0 rating. IFR system containing 6.25wt% CDS presented the best flame retardancy in PP. The experimental results obtained from LOI and UL‐94, TGA, SEM, and mechanical properties indicated that the combination of CDS and CFA presents synergistic effects in flame retardancy, char formation, and mechanical properties of the composites. This is probably due to different structures of polyhydroxyl macromolecules (CDS and CFA), the existence of dimethyl silicone group in CDS, and the toughness of epoxy silicon chain in CDS. SEM results proved that the interfacial compatibility between IFR and PP was improved by CDS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Aluminum monomethylphosphinate (MeP-Al) was synthesized and applied as a flame retardant for epoxy resin (EP). The structure of MeP-Al was characterized with FTIR, 1H NMR, 31P NMR and XRF. Curing reaction monitoring, thermal analysis, evolved gas and solid residue analysis, flammability tests (LOI, UL 94), microcombustion calorimeter and chemical analysis of residues were used. 20 mass% of MeP-Al provides EP with desired flame retardancy and anti-dripping property. The formulation passes the UL 94 V0 rating with LOI value of 29.6 %. MeP-Al mainly acts in the solid phase, and minority acts in the gas phase. P–H bond in MeP-Al can react with the unsaturated bond of compounds coming from decomposition of EP to form the condensed and stable phosphate salts in the solid phase. The firm char is a good barrier to avoid heat transfer and progressive degrading of the inner material.  相似文献   

17.
A series of flame retardant epoxy resins (EPs) containing phosphorus‐containing oligomeric silsesquioxane are prepared, and an interesting blowing‐out effect is detected in flame retardant EPs. The temperature profiles show that blowing‐out effect slows the heat transfer from the fire to the unburned matrix; furthermore, this blowing‐out effect can even take away some heat from the surface zone by the spurting gases. The thermo gravimetric analyzer and Fourier transform infrared spectrometer result shows that the spurting gases during the blowing‐out effect have a high content of CO2, which could reduce the combustion capability of the jetting gases. The flame retardancy of these EPs is tested by limit oxygen index and UL‐94. The incorporation of 2.5 wt% phosphorus‐containing oligomeric silsesquioxane into EP gives a remarkable blowing‐out effect, which results in a significant enhancement of limit oxygen index value and UL‐94 rating. The flame retardancy mechanism of blowing‐out effect is quite different from the traditional mechanisms. The char strength and morphology of EP composites are also investigated to explain the mechanism of the blowing‐out effect. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The synergistic effect of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) immobilized silica (SiO2‐DOPO) nanoparticles with an intumescent flame retardant (IFR) on the flame retardancy of polypropylene (PP) was investigated by UL 94 vertical tests and limiting oxygen index (LOI) measurements. It was found that the PP/IFR composites (25 wt%) achieved the UL94 V0 grade and LOI increased to 32.1 with an incorporation of 1.0 wt% SiO2‐DOPO nanoparticles. Based on thermogravimetric analysis, scanning electronic microscopy and rheological analysis, it is speculated that three factors are mainly contributed to the improvement of the flame retardancy. First, the thermal stability of PP/IFR composites was improved by incorporating SiO2‐DOPO nanoparticles. Second, the presence of SiO2‐DOPO nanoparticles could induce the formation of a continuous char skin layer during combustion. The compact char layer could effectively impede the transport of bubbles and heat. Third, rheological analysis indicated that SiO2‐DOPO nanoparticles could increase viscosity of the PP/IFR composites, which was also benefited to increase flame retardancy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, three typical transition metal phosphide nanocrystallines (MxPy, M = Ni, Co, and Cu) were synthesized by a novel hydrothermal method, and their structures were characterized by X‐ray diffraction and transmission electron microscopy. Then they were used as synergistic agents with intumescent flame retardant (IFR) to improve the fire safety of polypropylene (PP). Thermogravimetry analysis (TGA) results indicated that the introduction of these synergists could improve the thermal stability and char yields of the PP/IFR system. The addition of 2 wt.% Ni12P5 and Co2P increased the limiting oxygen index values of the PP/IFR system significantly from 28% to 36% and 34%, respectively, and the system could reach V‐0 rating. The cone calorimeter test results revealed that the combination of transition metal phosphide nanocrystallines and IFR system could result in excellent flame retardancy. The incorporation of these synergists into IFR led to a remarkable influence on charring of PP composites as revealed by TGA and cone data. The morphological structure of char residue proved that the addition of transition metal phosphide nanocrystallines was capable of forming a compact and homogeneous char on the surface, which turned out to be of most importance for the flame retardancy. Thermogravimetric analysis/infrared spectrometry results indicated that the flame retardant mechanism of PP/IFR/MxPy (M = Ni, Co, and Cu) system was in the condensed phase rather than in the gas phase. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A novel activated carbon spheres (ACS)@SnO2@NiO hierarchical hybrid architecture was first synthesized and applied for enhancing the flame retardancy of epoxy (EP) resin via a cooperative effect. Herein, using activated carbon microspheres as the template, SnO2 and NiO nanospheres were successively anchored to it by a sedimentation‐calcination strategy. The well‐designed ACS@SnO2@NiO significantly enhanced the flame retardancy for consistency of EP composites, as demonstrated by thermogravimetric and cone calorimeter experiments. For instance, the incorporation of 2 wt% ACS@SnO2@NiO decreased by 15.5% maximum in the total smoke production, accompanying the higher graphitized char layer. In addition, the synergetic mechanism of flame retardancy between ACS@SnO2@NiO and aluminum hypophosphite (AHP) was investigated. The obtained sample satisfied the UL‐94 V‐0 rating with a 5.0 wt% addition of AHP and ACS@SnO2@NiO (the ratio of the mass fraction of AHP to ACS@SnO2@NiO is 4.5:0.5). Notably, the incorporation of AHP and ACS@SnO2@NiO resulted in a significant decrease in the fire hazard properties of EP resin; for instance, 4.5AHP‐0.5ACS@SnO2@NiO/EP resulted in a maximum decrease of 32.4% in the total smoke production as compared with that of pure EP resin. It should be noted that the improved flame‐retardant performance for the EP composites is primarily attributed to the synergistic effect of ACS@SnO2@NiO and AHP in promoting the formation of residual char in the condensed phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号