首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this work, 12‐tungestocobaltic acid based organic–inorganic hybrid material, [Bmim]6CoW12O40 (CoW) was synthesized and applied as a synergist in polypropylene (PP)/intumescent flame retardant (IFR) composites. The flame retardant properties were investigated by the limiting oxygen index (LOI), UL‐94 vertical burning test, thermal gravimetric analyzer (TGA), cone calorimeter and scanning electron microscopy (SEM) etc. The results showed that the PP composites with 16 wt% IFR and 1 wt% CoW achieves the UL‐94 V‐0 rating and gets a LOI value 28.0. However, only add no less than 25 wt% single IFR, can the PP composites obtain the UL‐94 V‐0 rating, which suggests that CoW has good synergistic effects on flame retardancy of PP/IFR composites. In addition, the SEM and cone calorimeter tests indicated the CoW improves the quality of char layer. The rate of char formation has been enhanced also because of the existence of CoW. It is the combination of a better char quality and a high rate of char formation promoted by CoW that results in the excellent flame retardancy of PP/IFR composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

3.
The synergistic effects of 4A zeolite (4A) on the thermal degradation, flame retardancy and char formation of a novel halogen‐free intumescent flame retardant polypropylene composites (PP/IFR) were investigated by the means of limiting oxygen index (LOI), vertical burning test (UL‐94), digital photos, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), cone calorimeter test (CCT), laser Raman spectroscopy (LRS) and X‐ray photoelectron spectroscopy (XPS). It was found that a small amount of 4A could dramatically enhance the LOI value of the PP/IFR systems and the materials could pass the UL‐94 V‐0 rating test. Also, it could enhance the fire retardant performance with a great reduction in combustion parameters of PP/IFR system from CCT test. The morphological structures observed by digital and SEM photos revealed that 4A could promote PP/IFR to form more continuous and compact intumescent char layer. The LRS measurement, XPS and TGA analysis demonstrated that the compactness and strength of the outer char surface of the PP/IFR/4A system was enhanced, and more graphite structure was formed to remain more char residue and increase the crosslinking degree. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A novel ionic liquid containing phosphorus ([PCMIM]Cl) was synthesized and characterized by FTIR, 1H NMR, 13C NMR and 31P NMR. Moreover, a new intumescent flame retardant (IFR) system, which was composed of [PCMIM]Cl and ammonium polyphosphate (APP), was used to impart flame retardancy and dripping resistance to polypropylene (PP). The flammability and thermal behaviors of intumescent flame‐retarded PP (PP/IFR) composites were evaluated by limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA) and cone calorimeter test. It was found that there was an obvious synergistic effect between [PCMIM]Cl and APP. When the weight ratio of [PCMIM]Cl and APP was 1:5 and the total amount of IFR was kept at 30 wt%, LOI value of PP/IFR composite reached 31.8, and V‐0 rating was obtained. Moreover, both the peak heat release rate and the peak mass loss rate of PP/IFR composites decreased significantly relative to PP and PP/APP composite from cone calorimeter analysis. The TGA curves suggested that [PCMIM]Cl had good ability of char formation, and when combined with APP, it could greatly promote the char formation of PP/IFR composites, hence improved the flame retardancy. Additionally, the rheological behaviors and mechanical properties of PP/IFR composites were also investigated, and it was found that [PCMIM]Cl could also serve as an efficient lubricant and compatibilizer between APP and PP, endowing the materials with satisfying processability and mechanical properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The two kinds of transition metal ion-incorporated nickel phosphates (TMIVSB-1) were synthesized by the hydrothermal method. The flame retardancy and thermal behavior of intumescent flame retardants (IFR), with and without TMIVSB-1 for PP, were investigated by LOI, UL-94 test, thermogravimetric analyses (TGA) and cone calorimetry. TMIVSB-1 can obviously improve the flame retardant behavior of IFR systems according to the results of LOI values and UL-94 test. The results of LOI show that 2 wt% TMIVSB-1 can increase the LOI value by 3–5 unit compared with that of PP/IFR composite. The UL-94 test shows that PP with 20% IFR burns and has no rating, but the addition of a small content 2 wt% of TMIVSB-1 with 18 wt% of IFR can reach a UL-94 V-0 rating. TGA results show that the thermal stability of PP/IFR/TMIVSB-1 increases obviously more than that of PP/IFR when the temperature is above 265°C. From cone calorimetry results, it can be observed that the HRR peaks are not obviously decreased, but the burning time of PP/IFR/FeVSB-1 (351s) and PP/IFR/ZnVSB-1 (380s) is obviously prolonged compared with that of PP/IFR (303s). The real time FTIR spectra (RTFTIR) demonstrates that the addition of TMIVSB-1 further staves the decomposition of the PP composites. The scanning electron microscopy (SEM) indicates the quality of char forming of PP/IFR/ TMIVSB-1 is superior to that of PP/IFR.  相似文献   

6.
The flame retardancy of a novel intumescent flame‐retardant polypropylene (IFR‐PP) system, which was composed of a charring agent (CA), ammonium polyphosphate (APP), and polypropylene (PP), could be enhanced significantly by adding a small amount (1.0 wt%) of an organic montmorillonite (O‐MMT). The synergistic flame‐retardant effect was studied systematically. The thermal stability and combustion behavior of the flame‐retarded PP were also investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). TGA results demonstrated that the onset decomposition temperatures of IFR‐PP samples, with or without O‐MMT, were higher than that of neat PP. Compared with IFR‐PP, the LOI value of IFR‐PP containing 1.0 wt% O‐MMT was increased from 30.8 to 33.0, and the UL‐94 rating was also enhanced to V‐0 from V‐1 when the total loading of flame retardant was the same. The cone calorimeter results showed that the IFR‐PP with 1.0 wt% of O‐MMT had the lowest heat release rate (HRR), total heat release (THR), total smoke production (TSP), CO production (COP), CO2 production (CO2P), and mass loss (ML) of all the studied IFR‐PP samples, with or without O‐MMT. All these results indicated that O‐MMT had a significantly synergistic effect on the flame‐retardancy of IFR‐PP at a low content of O‐MMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The synergistic effect of four different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), boron silicon containing preceramic oligomer (BSi) and lanthanum borate (LaB), were studied to improve the flame retardancy of a polypropylene (PP) intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated by limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA) and cone calorimeter tests. The addition of 20 wt% intumescent flame retardant (IFR) improves the flame retardancy by increasing the char formation. According to LOI and UL-94 test, boron compounds show their highest synergistic effect at 1 wt% loading. BPO4 containing composite shows the highest LOI (30), lowest maximum heat release rate (HRR) and lowest total heat release rate (THR) value. Although the char yield increases as the amount of boron compounds increases, the flame retarding effect decreases. Cone calorimeter and TGA data indicate that the boron compounds are likely to show their synergistic effect by reinforcing the integrity of char which improves its barrier effect rather than increasing the char yield.  相似文献   

8.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

9.
Low flame retardant efficiency is a key bottleneck for currently available retardants against the flammable polypropylene (PP). Herein, the organically modified montmorillonite (OMMT) was utilized as a synergist for our previously reported intumescent flame retardant (IFR) that was constructed from ammonium polyphosphate (APP) and hyperbranched charring foaming agent (HCFA) to further enhance the retardant efficiency against PP. The resultant's combustion behavior was thoroughly investigated by cone calorimetry, limiting oxygen index (LOI), vertical burning test (UL‐94), and scanning electron microscopy (SEM). The results showed that 20% addition of IFR with OMMT showed a positive effect and improved the flame retardancy of the PP systems. Especially, addition of 2 wt% OMMT obviously increased the LOI values of PP systems with 20% total loading flame retardants from 29% to 31.5% and the samples meet V‐0 rating as well as the reduction of the heat release rate (HRR), total heat release (THR), CO2, and CO production occurred. On the other hand, the SEM images were also revealed that OMMT initiated a dense and strong char on the surface of the material, which resulted in efficient flame retardancy of PP matrix during combustion. In addition, thermal degradation behavior discussed by thermogravimetric analysis (TGA) indicated that OMMT could improve the thermal stability of PP systems under high temperature, and promoted char residues of PP/IFR systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Nanoflaky manganese phosphate (NMP) was synthesized from manganese nitrate and trisodium phosphate dodecahydrate, and used as a synergistic agent on the flame retardancy of polypropylene (PP)/intumescent flame retardant (IFR) system. The thermogravimetric analysis (TGA), real time Fourier-transform infrared (RTFTIR) spectroscopy measurements, cone calorimeter (CONE) and microscale combustion calorimeter (MCC) were used to evaluate the synergistic effects of NMP on PP/IFR system. When IFR + NMP was fixed at 20 wt% in flame retardant PP system, the TGA tests showed that NMP could enhance the thermal stability of PP/IFR system at initial temperature from about room temperature to 440 °C and effectively increase the char residue formation. The RTFTIR results revealed that NMP could clearly change the decomposition behavior of PP in PP/IFR system, which promotes decomposition at the initial temperature from about room temperature to 260 °C and forms more effective barrier layer to protect PP from decomposing at high temperature from about 260 °C to 500 °C. The CONE tests indicated that the addition of NMP in PP/IFR system not only reduced the peak heat release rate (HRR), but also prolonged the ignition time. The MCC results revealed that PP/IFR/NMP system generated less combustion heat over the course of heating than that of PP/IFR system. And scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to explore the char residues of the PP/IFR systems with and without NMP.  相似文献   

11.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The performances of the novel intumescent flame retardant (IFR) polypropylene (PP) composites containing melamine phosphate (MP) and tris(1‐oxo‐2,6,7‐trioxa‐1‐phosphabicyclo[2,2,2]methylene‐4)phosphate (TPMP) were investigated. The flame retardancy of IFR‐PP system was characterized by limiting oxygen index (LOI) and UL 94 and cone calorimeter. The morphology of the char obtained after cone calorimeter testing was studied by scanning electron microscopy (SEM). The thermal oxidative degradation (TOD) of the composites was investigated by using thermogravimetric analysis (TGA) and real‐time Fourier transform infrared spectroscopy (RT‐FTIR). Compared with the PP/ TPMP or PP/ MP binary composite, at the same addition level, the LOI values of the PP/MP/TPMP ternary composites increase and reach V‐0 at the suitable MP/TPMP ratio. The results of TGA and RT‐FTIR showed the existence of the interaction between IFR and PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of polysiloxane and silane‐modified SiO2 (M‐SiO2) on properties of intumescent flame retardant polypropylene (IFR‐PP) have been studied. The results demonstrate that both polysiloxane and M‐SiO2 could effectively enhance the flame retardancy of the IFR‐PP, despite only 20 wt% loading of IFRs. Remarkably, the polysiloxane can clearly improve the water resistance of IFR‐PP. It can obtain UL‐94 V‐0 rating, and its LOI remains over 34% after the water treatment. The surface tension data, XPS data, and SEM sufficiently prove that the some of polysiloxane transfers to the IFR‐PP surface during processing. The TGA data show that the polysiloxane more effectively enhances the thermal stability of the IFR‐PP at high temperature and increases the char residue. The CONE results reveal that the polysiloxane can clearly change the decomposition behavior of PP and markedly reduce flammability parameters. The homogenous and compact intumescent char layers further confirm that polysiloxane is a very effective silicon‐containing additive for the flame retardancy and water resistance of the IFR‐PP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Kaolin clay was introduced into an intumescent flame retardant (IFR) system containing ammonium polyphosphate as an acid source and pentaerythritol as a carbonization agent in order to improve the thermal stability and flame retardancy of polypropylene (PP) composite. The flame retardancy and smoke suppression was evaluated by the limiting oxygen index, vertical burning UL‐94, and cone calorimeter (CONE) tests. The limiting oxygen index value was increased from 30 to 33 at the presence of 2 phr kaolin. The peak heat release rate value decreased from 1002 kW/m2 of neat PP to 318 kW/m2 of PP/40 phr IFR and then to 222 kW/m2 of PP/38 phr IFR/2 phr kaolin. The time of the peak heat release rate was significantly prolonged after the introduction of kaolin. The morphology of char after combustion was characterized by a scanning electron microscope, and it revealed more compact char structure that was obtained at the presence of kaolin. The mechanism of kaolin on improving the retardancy and smoke suppression of PP/IFR composite was proposed on the basis of X‐ray photoelectron spectroscopy analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A novel hyperbranched polyamine charring agent (HPCA), a derivative of triazines, was synthesized and well characterized by 1H NMR and FTIR. HPCA and ammonium polyphosphate (APP) were added into polylactide (PLA) resin as an intumescent flame retardant (IFR) system to impart flame retardancy and dripping resistance to PLA. The flammability and thermal stability of IFR-PLA composites were investigated by limiting oxygen index (LOI), UL-94 vertical burning, cone calorimetry and thermogravometric analysis (TGA) tests. The results showed that the IFR system had both excellent flame retardant and anti-dripping abilities for PLA. The TGA curves suggested that HPCA has good ability of char formation and when combined with APP, would induce synergistic effect which could be clearly observed. This effect greatly promoted the char formation of IFR-PLA composites, hence improved the flame retardant property. Additionally, the structure and morphology of char residues were studied by XPS, FTIR and SEM.  相似文献   

17.
The synergistic effect of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) immobilized silica (SiO2‐DOPO) nanoparticles with an intumescent flame retardant (IFR) on the flame retardancy of polypropylene (PP) was investigated by UL 94 vertical tests and limiting oxygen index (LOI) measurements. It was found that the PP/IFR composites (25 wt%) achieved the UL94 V0 grade and LOI increased to 32.1 with an incorporation of 1.0 wt% SiO2‐DOPO nanoparticles. Based on thermogravimetric analysis, scanning electronic microscopy and rheological analysis, it is speculated that three factors are mainly contributed to the improvement of the flame retardancy. First, the thermal stability of PP/IFR composites was improved by incorporating SiO2‐DOPO nanoparticles. Second, the presence of SiO2‐DOPO nanoparticles could induce the formation of a continuous char skin layer during combustion. The compact char layer could effectively impede the transport of bubbles and heat. Third, rheological analysis indicated that SiO2‐DOPO nanoparticles could increase viscosity of the PP/IFR composites, which was also benefited to increase flame retardancy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of lanthanum oxide (La2O3) as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP) were studied, and the new IFR system mainly consisted of the charring-foaming agent (CFA) and ammonium polyphosphate (APP). The limiting oxygen index (LOI), UL-94 test, thermogravimetric analysis (TGA), cone calorimeter (CONE) and scanning electron microscopy (SEM) were used to evaluate the synergistic effects of La2O3. It was found that when IFR was fixed at 20 wt% in IFR-PP composites, only a little amount of La2O3 could enhance LOI value and pass the UL-94 V0 rating test (1.6 mm). The TGA data showed that La2O3 could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that La2O3 and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), ignition time (IT) and so on. The morphological structures observed by SEM demonstrated that La2O3 could promote to form the homogenous and compact intumescent char layer. Thus, a suitable amount of La2O3 plays a synergistic effect in the flame retardancy and smoke suppression of IFR composites.  相似文献   

19.
A carbonization agent, 3,9‐di (2‐hydroxyisopropyl)‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro‐[5,5]‐undecane (SPEPO), was synthesized from pentaerythritol (PER), phosphorus trichloride, formic acid, and acetone as raw materials. The structure of SPEPO was characterized by FTIR and 1H‐NMR. As a carbonization agent and an acid source, SPEPO can form a novel intumescent flame‐retardant (IFR) system for low density polyethylene (LDPE) together with ammonium polyphosphate (APP) and melamine phosphate (MP). The flame retardancy and thermal behavior of the IFR system for LDPE were investigated by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). When the weight ratio of SPEPO, APP, and MP is 7:7:1 and their total loading level is 30%, the IFR‐LDPE presents the optimal flame retardancy (LOI value of 27.6 and UL‐94 V‐0 rating). However, SPEPO, APP, or MP can only show a very poor flame‐retardant performance when used alone. This indicates that there is a synergistic effect among SPEPO, APP, and MP. TGA results obtained in air demonstrate that SPEPO has an ability of char formation itself, and the char residue of SPEPO can reach 24 wt% at 700°C. The IFR can change the thermal degradation behavior of LDPE, enhance Tmax of the decomposition peak of LDPE, and promote LDPE to form char based on the calculated and the experimental data of residues. According to the results of Py‐GC/MS in combination with FTIR of the char residues at different temperatures, a possible flame‐retardant mechanism has been proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate (MAPP) on the thermal and flame retardancy of polypropylene (PP) are investigated by limiting oxygen index (LOI), UL‐94 test, cone calorimetry, thermogravimetric analysis (TGA), scanning electron micrograph (SEM), and water resistance test. The results of cone calorimetry show that heat release rate peak (PHRR), total heat release (THR), and the mass loss of PP with 30 wt% intumescent flame retardant (IFR, CFA/MAPP = 1:2) decreases remarkably compared with that of pure PP. The HRR, THR, and mass loss decrease, respectively from 1140 to 100 kW/m2, from 96 to 16.8 MJ/m2, and from 100 to 40%. The PP composite with CFA/MAPP = 1:2 has the best water resistance, and it can still obtain a UL‐94 V‐0 rating after 168 hr soaking in water. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号