首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
A simple and inexpensive immunosensor is reported for the rapid determination of Staphylococcus aureus B-1266 that uses Fe3O4–SiO2–NH2 nanoparticles as the direct signal label. The electrochemical immunoassay procedure includes the incubation of bacteria with excess magnetite nanoparticles, the magnetic separation of the free nanoparticles, a labeled immunocomplex formation on the surface of a planar electrode, and the electrochemical response from the magnetite nanoparticles in the immunocomplex. The electrochemical immunosensor allows for the selective and accurate detection of S. aureus from 10 to 105?CFU?mL?1 with a relative standard deviation lower than 10%. The limit of detection was 8.7?CFU?mL?1.  相似文献   

2.
《Analytical letters》2012,45(8):1241-1254
A novel electrochemical immunosensor was prepared for the detection of the hepatitis C virus non-structural 5A protein. A glassy carbon electrode was modified with an Au-MoO3/Chitosan nanocomposite that warranted good conductivity and biocompatibility. Mesoporous silica with a large specific surface served as a nanocarrier for horseradish peroxidase and the polyclonal antibody as the reporter probe. The immunosensor was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Following the sandwich-type immunoreaction, horseradish peroxidase was efficiently captured on the surface of the electrode to catalyze the decomposition of hydrogen peroxide. The analytical signal was obtained as an amperometric i-t curve (chronoamperometry). The assay reported here had a wide detection range (1 ng mL?1 ?50 µg mL?1) and detection limit as low as 1 ng mL?1 of hepatitis C virus non-structural 5A protein. The electrochemical biosensor experiments showed excellent reproducibility, high selectivity, and outstanding stability for the determination of hepatitis C virus non-structural 5A protein, and it was successfully applied to the detection of the analyte in real serum samples.  相似文献   

3.
Biofunctionalizing a simple and disposable graphene oxide-modified screen-printed carbon electrode with anti-interleukin-15 antibodies has been successfully demonstrated for the first time for the label-free electrochemical detection of interleukin-15, a biomarker of early HIV infection. To improve the electrochemical reactivity and introduce carboxylic groups on the surface of screen-printed carbon electrode, high-quality graphene oxide was used for the modification of screen-printed carbon electrode. With simple modification of the screen-printed carbon electrode, the device exhibited satisfactory sensitivity, selectivity, stability, reproducibility, and regenerability. The immunosensor provided a detection limit of 3.51?ng?mL?1 and a sensitivity of 0.5655?µA cm?2?mL?ng?1. The simply constructed immunosensor thus rendered promising device for immunoreactions on the surface of the electrode.  相似文献   

4.
We report on a sensitive electrochemical immunoassay for the prostate specific antigen (PSA). An immunoelectrode was fabricated by coating a glassy carbon electrode with multiwalled carbon nanotubes, poly(dimethyldiallylammonium chloride), CeO2 and PSA antibody (in this order) using the layer-by-layer method. The immunosensor is then placed in a sample solution containing PSA and o-phenylenediamine (OPD). It is found that the CeO2 nanoparticles facilitate the electrochemical oxidation of OPD, and this produces a signal for electrochemical detection of PSA that depends on the concentration of PSA. There is a linear relationship between the decrease in current and the concentration of PSA in the 0.01 to 1,000 pg mL?1 concentration range, and the detection limit is 4 fg mL?1. The assay was successfully applied to the detection of PSA in serum samples. This new differential pulse voltammetric immunoassay is sensitive and acceptably precise, and the fabrication of the electrode is well reproducible. Figure
A novel electrochemical immunoassay for prostate specific antigen (PSA) was developed. Ceria (CeO2) mesoporous nanospheres facilitated the electrochemical oxidation of o-phenylenediamine (OPD). The developed immunoassay has high sensitivity and can be successfully applied for the detection of PSA in serum samples  相似文献   

5.
《Analytical letters》2012,45(13):2266-2280
A novel electrochemical immunosensor was developed for the determination of prostate-specific antigen based on immobilization of appropriate antibodies on gold nanoparticles and a poly-(2,6-pyridinediamine) modified electrode. The nanocomposite of ferrocene monocarboxylic acid hybridized graphene oxide was prepared by a π-π stacking interaction and was used as the electrochemical probe. A sandwich-type complex immunoassay was applied with polyclonal prostate-specific antigen antibodies labeled with the nanocomposite of ferrocene monocarboxylic acid hybridized graphene oxide. In order to improve the sensitivity, a potentiostatic method was used to reduce graphene oxide. Cyclic voltammetry and differential pulse voltammetry were employed to characterize the assembly process and the performance of the immunosensor. Under optimal conditions, the peak current of the immunosensor increased with concentration, showing a linear relationship between the peak current and the logarithm of the prostate-specific antigen concentrations in a wide range of 2.0 pg mL?1 to 10.0 ng mL?1 with a low detection limit of 0.5 pg mL?1. The immunosensor was used for the determination of prostate-specific antigen in serum.  相似文献   

6.
The application of gold nanoparticle-based electrochemical immunoassays have been extensively studied for the detection of hepatitis B surface antigen (HBsAg), but most often they exhibit low sensitivity. We describe the fabrication of a new electrochemical immunoassay for signal amplification of the antigen-antibody reaction combined with the nanogold-based bio-barcode technique. Hepatitis B surface antibody (HBsAb) was initially immobilized on a nanogold/thionine/DNA-modified gold electrode, and then a sandwich-type immunoassay format was employed for the detection of HBsAg using nanogold-codified horseradish peroxidase-HBsAb conjugates as secondary antibodies. Under optimal conditions, the current response of the sandwich-type immunocomplex relative to the H2O2 system was proportional to HBsAg concentration in the range from 0.5 to 650 ng·mL?1 with a detection limit of 0.1 ng·mL?1 (S/N?=?3). The precision, reproducibility and stability of the immunosensor were acceptable. Subsequently, the immunosensors were used to assay HBsAg in human serum specimens. Analytical results were in agreement with those obtained by the standard chemiluminescence enzyme-linked immunosorbent assay.  相似文献   

7.
A sensitive electrochemical immunosensor was developed for detecting fumonisin B1 (FB1) in corn using the single‐walled carbon nanotubes/chitosan. The detection mechanism of immunosensor was based on an indirect competitive binding to a fixed amount of anti‐FB1 between free FB1 and FB1‐bovine serum albumin, which was conjugated on covalently functionalized nanotubes/chitosan laid on the glass carbon electrode. The anti‐rabbit immunoglobulin G secondary antibody labeled with alkaline phosphatase was then bound to the electrode surface through reactisubstrate α‐naphthyl phosphate, which produced electrochemical signal. Under optimized conditions, this method could detect FB1 from 0.01 to 1000 ng mL?1 with a detection limit of 2 pg mL?1. This is well below the detection limit required from European Union legislation, 2–4 mg L?1. Moreover, good recoveries were obtained for the detection of spiked corn samples and actual corn samples. As the method has good sensitivity and recovery for detecting FB1, it is a practical detection method.  相似文献   

8.
A simple and sensitive electrochemical immunosensor for a one-step immunoassay for alpha-fetoprotein (AFP) was designed using silver nanoparticles and double-stranded DNA as matrices. The detection was based on the change in the electron transfer resistance before and after the antigen-antibody reaction by using electrochemical impedance spectroscopy. Under optimal conditions, the resistance shift of the immunosensor is proportional to the AFP concentration in the range 3.5 –360 ng·mL?1 with a detection limit of 1.5 ng·mL?1 (at 3σ). The immunosensor exhibits high sensitivity, good reproducibility and stability. Results obtained for clinical serum samples by the immunosensor are in accordance with those determined by spectrophotometric enzyme-linked immunosorbent assays.  相似文献   

9.
A facile and ultrasensitive electrochemiluminescent (ECL) immunosensor for detection of prostate-specific antigen (PSA) was designed by using CdTe quantum dots coated silica nanoparticles (SiO2@QDs) as bionanolabels. To construct such an electrochemiluminescence immunosensor, gold nanoparticles-dotted graphene composites were immobilized on the working electrode, which can increase the surface area to capture a large amount of primary antibodies as well as improve the electronic transmission rate. The as-prepared SiO2@QDs used as bionanolabels, showed good ECL performance and good ability of immobilization for secondary antibodies. The approach provided a good linear response ranging from 0.005 to 10 ng?mL?1 with a low detection limit of 0.0032 ng?mL?1. Such immunosensor showed good precision, acceptable stability, and reproducibility. Satisfactory results were obtained for determination of PSA in human serum samples. Therefore, the proposed method provides a new promising platform of clinical immunoassay for other biomolecules.  相似文献   

10.
A new strategy is described to construct disposable electrochemical immunosensors for the assay of human immunoglobulin. It is based on a carbon paste electrode constructed from chitosan nanoparticles modified with colloidal gold. The stepwise assembly process of the immunosensor was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. Assay conditions that were optimized included the amount of chitosan nanoparticles in the preparation of carbon paste electrode, antibody concentration, and the incubation time of the antibody immobilization. Using hexacyanoferrate as a mediator, the current change increased with the concentration of human immunoglobulin G. A linear relationship in the concentration range 0.3 to 120 ng mL?1 was achieved, with a detection limit of 0.1 ng mL?1 (S/N?=?3). The method combines the specificity of the immunological reaction with the sensitivity of the gold colloid amplified electrochemical detection, and it has potential application in clinical immunoassay.  相似文献   

11.
Present work demonstrates the fabrication of new and facile sandwich‐type electrochemical immunosensor based on palladium nanoparticles (PdNPs), polyaniline (PANI) and fullerene‐C60 nanocomposite film modified glassy carbon electrode (PdNP@PANI‐C60/GCE) for ultrasensitive detection of Prostate‐specific antigen (PSA) biomarker. PdNP@PANI‐C60 was electrochemically synthesized on GCE and used as an electroactive substrate. PdNP@PANI‐C60 was characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Primary antibody anti‐PSA (Ab1) was covalently immobilized on PdNP@PANI‐C60/GCE using NHS/EDC linkers. In the presence of PSA antigen, horseradish peroxidase secondary antibody (HRP‐Ab2) was brought into the surface of the electrode, developing stable amplified signals of H2O2 reduction. Under the optimal conditions, a linear curve for determination of PSA at the proposed immunosensor was 1.6×10?4 ng.mL?1 to 38 ng.mL?1 with a limit of detection (LOD) of 1.95×10?5 ng.mL?1. The proposed immunosensor was successfully validated in serum and urine samples towards PSA detection with satisfactory and acceptable results.  相似文献   

12.
A novel electrogenerated chemiluminescence (ECL) immunoassay based on enzyme amplification and magnetic nanoparticle enrichment was developed, and carbohydrate antigen 125 (CA125) was chosen as the analyte. Fe3O4 magnetic nanoparticles loaded with anti-CA125 were synthesized. The sandwich-type immunoassay was performed on the magnetic force-controlled carbon paste electrode via the immunoreactions among glucose oxidase-labeled anti-CA125, CA125, and anti-CA125 on the surface of magnetic nanoparticles. ECL was generated by the reaction between luminol and hydrogen peroxide. Hydrogen peroxide was produced during the enzymatic reaction with glucose and markedly increased in the presence of CA125 antigen. The CA125 concentrations were determined within the range of 0–10?mU?mL?1, and the detection limit was 8.0 μU mL?1. The CA125 immunosensor was more sensitive than those previously reported. The proposed ECL method also provided a simple selectivity immunoassay protocol, which was applied in the determination of CA125 in clinical serum samples.  相似文献   

13.
This study describes the utilisation of a glassy carbon electrode modified with a composite of multi-walled carbon nanotube and Cr-based metal-organic framework (MIL-101, Cr-BDC, BDC = 1,4-benzenedicarboxylate) for the sensitive, simple and fast voltammetric determination of picloram in environmental samples. Under optimum conditions, additions of picloram using square wave voltammetry showed linear ranges of picloram concentrations from 24.15 to 3018 µg?L?1 (0.1–12.5 μM) and from 3018 to 9658 µg?L?1 (12.5–40 μM) with a detection limit of 14.49 µg?L?1 (0.06 µM). The method was successfully applied to the determination of picloram in tap and river water samples spiked with picloram without any purification step by the standard addition method. The good recovery values obtained ranging from 97.5% to 105.0% revealed the reliability and accuracy of the method.  相似文献   

14.
We report on the modification of a graphene paste electrode with gold nanoparticles (AuNPs) and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen (HBsAg). To obtain the immunosensor, an antibody against HBsAg was immobilized on the surface of the electrode, and this process was followed by cyclic voltammetry and electrochemical impedance spectroscopy. The peak currents of a hexacyanoferrate redox system decreased on formation of the antibody-antigen complex on the surface of the electrode. Then increased electrochemical response is thought to result from a combination of beneficial effects including the biocompatibility and large surface area of the AuNPs, the high conductivity of the graphene paste electrode, the synergistic effects of composite film, and the increased quantity of HBsAb adsorbed on the electrode surface. The differential pulse voltammetric responses of the hexacyanoferrate redox pair are proportional to the concentration of HBsAg in the range from 0.5–800?ng?mL?1, and the detection limit is 0.1?ng?mL?1 (at an S/N of 3). The immunosensor is sensitive and stable.
Figure
We report on the modification of a graphene paste electrode with gold nanoparticles and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen. The immunosensor is sensitive and stable.  相似文献   

15.
A sensitive and rapid magnetic nanoparticle-based fluorescent immunoassay for the determination of aflatoxin M1 in raw milk was developed. Aflatoxin M1 was converted to aflatoxin M1-o-carboxymethyl oxime. The aflatoxin M1-oxime was used for the preparation of aflatoxin M1-oxime-fluoresceinamine conjugate through the carbodiimide reaction. The aflatoxin M1-oxime-fluoresceinamine conjugate was characterized by ultraviolet–visible and infrared spectroscopy. Magnetic nanoparticles (Fe3O4) were synthesized and modified by 3-(aminopropyl)triethoxysilane. The size of initial (139?nm) and functionalized magnetic nanoparticles (147?nm) was determined by particle analysis. The optimal mass of immobilized antibody (25?µg) and optimal concentration of aflatoxin M1-oxime-fluoresceinamine conjugate (15?µg?mL?1) for magnetic nanoparticle-based fluorescent immunoassay were determined. The developed immunoassay provided a linear aflatoxin M1 concentration range from 3.0 to 100?pg?mL?1 in bovine milk. The detection limit was 2.9?pg?mL?1. The results of aflatoxin M1 magnetic nanoparticle-based fluorescent immunoassay in heat-treated milk and phosphate-buffered saline at pH 6.6 were compared. The influence of the somatic cell count, pH, and fat concentration in bovine milk on the aflatoxin M1 immunoassay was investigated. The influence of the milk species on the immunoassay was also characterized. The high fat concentration ovine milk depressed the sensitivity of the aflatoxin M1 immunoassay.  相似文献   

16.
In this work, a novel sandwich‐type electrochemical immunosensor with electroactive nickel hexacyanoferrate nanoparticles (NiHCFNPs) as matrix was constructed for α‐fetoprotein (AFP) detection in a signal‐off manner by using FeS2?AuNPs nanocomposite catalyzed insoluble precipitation to significantly inhibit the electrochemical signal. Initially, the NiHCFNPs with excellent electrochemical property was modified on the electrodeposited nano‐Au electrode to obtain a strong initial electrochemical signal. Subsequently, another nano‐Au layer was formed for immobilization of capture antibody (Ab1). In the presence of target AFP, the prepared FeS2?AuNPs‐Ab2 bioconjugate could be specifically recognized and immobilized on electrode through the sandwich‐type immunoreaction. The FeS2 with large specific surface areas were used as scaffolds to load abundant mimicking enzyme AuNPs. With the help of hydrogen peroxide (H2O2), FeS2?AuNPs with peroxidase‐like activity accelerated the 4‐chloro‐1‐naphthol (4‐CN) oxidation with generation of insoluble precipitation on electrode, which would greatly hinder the electron transfer and thus caused the decrease of electrochemical signal for quantitative determination of AFP. This approach achieved a wide dynamic linear range from 0.0001 to 100 ng mL?1 with an ultralow limit detection of 0.028 pg mL?1. Especially, the proposed AFP immunosensor can be applied to detect human serum samples with satisfactory results, indicating a potential application in clinical monitoring of tumor biomarkers.  相似文献   

17.
以负载Au的金属有机骨架材料(AuNPs/Cu-TPA)标记CEA抗体(Ab2)为信号探针,通过电还原的方法将氧化石墨烯还原到电极上,研制了一种捕获CEA抗体(Ab1)的电化学免疫传感器,并将其应用于癌胚抗原(CEA)检测.所合成的MOFs材料中含有大量Cu2+,且电化学信号比较稳定,因此可以通过检测MOFs材料中Cu2+的信号实现对CEA的检测.此信号探针不需要预处理和酸处理,易负载贵金属从而固定抗体,大大简化了检测步骤并缩短了检测时间.此传感器对CEA的检测灵敏度好,操作简便.在最优实验条件下,此传感器的线性范围为0.1~ 80 ng/mL,检出限为0.03 ng/mL,线性相关系数为0.9887,可用于真实样品中CEA的测定.  相似文献   

18.
《Analytical letters》2012,45(5):947-956
Abstract

A new electrochemical substrate for horseradish peroxidase, methyl red, is reported. In this reaction system, horseradish peroxidase can catalyze the redox reaction of methyl red and H2O2. Methyl red exhibits a sensitive voltammetric peak at?0.51 V vs. Ag/AgCl reference electrode, the decrease of the peak current of methyl red is in proportion to the concentration of horseradish peroxidase (HRP). The linear range for determination of horseradish peroxidase is 5.0×10?8~5.0×10?7 g mL?1 and the detection limit is 1.8×10?8 g mL?1. The relative standard deviation is 3.3% when 2.0×10?7 g mL?1 HRP was sequentially determined 11 times. A voltammetric enzyme‐linked immunoassay method for the determination of estriol was developed, based on this electrochemical system. The linear range for determination of estriol is 1.0~1000.0 ng mL?1, and the detection limit is 0.33 ng mL?1. The relative standard deviation for 11 parallel determinations with 200 ng mL?1 estriol is 4.8%. Some pregnancy serum samples were analyzed with satisfactory results.  相似文献   

19.
A rapid, simple, and reliable competitive immunoassay was developed for measurement of lead ions Pb(II) in environmental samples. Avian antibodies were produced against Pb(II). Since lead ions are too small to elicit an immune response, the metal was coupled to protein carrier Bovine serum albumin (BSA) using a bifunctional chelator 1-(4-isothiocyanobenzyl) ethylenediamine N,N,N′,N′-tetra acetic acid (ITCBE). Poultry birds (layers) were immunised with this Pb(II)–ITCBE–BSA immunoconjugate and the avian antibodies (IgY) isolated from egg yolk recognised Pb(II)-ITCBE complexes as capture reagent and a Pb(II)–ITCBE conjugate of Alkaline phosphatase as an enzyme label. Antibody reaction was optimised for different concentrations of antigen and antibody dilutions. Cross reactivity with other metals were below 1% in competitive ELISA. The IC50 value of this avian antibody was 0.19?µg?mL?1. The detection range and the detection limit were 0.02–1000?µg?mL?1and 0.2?µg?mL?1, respectively.  相似文献   

20.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号