首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
A multi-residue method for the simultaneous extraction from drinking water using solid-phase extraction on LiChrolut EN [poly(styrene-divinylbenzene), PSDVB] and determination of nine N-methylcarbamate pesticides (NMCs) (aldicarb, its metabolites i.e. aldicarb sulfone and aldicarb sulfoxide and carbaryl, carbofuran, dioxacarb, ethiofencarb, methomyl and propoxur) using reversed-phase liquid chromatography was studied. A 1000-fold pre-concentration was achieved and the method was used for determination of the nine pesticides in water, with limits of detection in the range 3-15 ng L(-1). For all compounds the recoveries determined at the 0.1 and 1 microg L(-1) level generally ranged from 85 to 104% with relative standard deviations (RSD) of 1.4-8.8%.  相似文献   

2.
This paper described a simple, rapid and efficient method for the determination of N-methyl carbamate pesticides in tomato, cucumber, carrot and lettuce samples by dispersive liquid-liquid microextraction coupled with HPLC-diode array detection. Some experimental parameters that influenced the extraction efficiency, such as types and volumes of extraction and disperser solvents, extraction time and salt effect were examined and optimized. Under optimum conditions, the LOD of the method were 0.5-3.0 μg/kg depending on the compounds and the kind of vegetables. The linearities of the method were obtained in the range of 10.0-300 μg/kg for aldicarb, MTMC, carbofuran and carbaryl, and 20.0-600 μg/kg for isoprocarb, with the correlation coefficients ranging from 0.9921 to 0.9993. The RSD varied from 2.9 to 7.5% (n=5). The recoveries of the method for the five carbamates from vegetable samples at two different spiking levels were ranged from 77.8 to 98.2%. Results showed that the method we proposed can meet the requirements for the determination of N-methyl carbamate in vegetable samples and was finally applied to the analysis of target pesticides in vegetable samples taken from local markets.  相似文献   

3.

Zeolite NaY modified with cetyltrimethylammonium bromide (CTAB) was considered for extraction/preconcentration of carbamate pesticides using an on-line SPE-HPLC system. The simultaneous determination of carbamate pesticides, including aldicarb, carbofuran, carbaryl, isoprocarb, methiocarb and promecarb, was performed by HPLC–UV using a LichroCART RP-18 column with gradient elution of methanol and 0.1 % acetic acid. The sorbent presented admicelles of CTAB on its surfaces and exhibited a sorption capacity of 180–18,600 mg kg−1 sorbent, which could be re-modified for at least five extraction cycles. The quantitative retention of target pesticides on the admicellar sorbent involved hydrophobic and π-cation interaction, while pesticides were eluted from the admicellar SPE column using only 750 μL of methanol. LODs and LOQs of the proposed method were 0.005–140 and 0.02–600 μg L−1, respectively. The analytes were effectively concentrated with the enrichment factors between 5 and 551. The developed on-line admicellar SPE-HPLC system was successfully applied to the determination of carbamate pesticides in ten environmental water samples from different sources. Recoveries of spiked samples at a concentration of 0.1–5 mg L−1 ranged from 77 to 111 %.

  相似文献   

4.
A sensitive method using liquid chromatography with electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was developed and validated to quantify and confirm 13 pesticides, including aldicarb sulfoxide, aldicarb sulfone, oxamyl, methomyl, formetanate, 3-hydroxycarbofuran, carbendazim, thiabendazole, aldicarb, propoxur, carbofuran, carbaryl, and methiocarb, in soy-based infant formula. Data acquisition under MS/MS was achieved by applying multiple reaction monitoring of 2 fragment ion transitions to provide a high degree of sensitivity and selectivity for both quantitation and confirmation. Different approaches to constructing calibration curves were compared and discussed to address issues of the extraction efficiency or recovery, and matrix effects. Matrix-matched standard calibration curves with the use of isoprocarb as an internal standard were finally used to achieve the best accuracy of the method. Under most circumstances, recoveries of 13 pesticides, spiked at 5.0, 25.0, and 45.0 microg/kg, were close to 100%. The method detection limits (signal-to-noise ratio > or =3:1; microg/kg) of 13 pesticides were 0.2 for thiabendazole and methiocarb, 0.6 for aldicarb, and 0.1 for the others.  相似文献   

5.
建立了直接进样液相色谱-电喷雾串联质谱(LC-MS/MS)测定地下水中呋喃丹、涕灭威及其代谢物涕灭威亚砜和涕灭威砜的分析方法。对质谱条件和液相色谱条件进行了优化,以甲醇-水为流动相,多反应监测模式(MRM)对目标物进行定性定量分析。结果表明:目标物在0.05~100μg/L范围内线性关系良好,相关系数(r2)为0.996 0~0.999 3;方法检出限为0.01~0.05μg/L;以3个水平进行样品加标实验,目标化合物的回收率为90%~106%,相对标准偏差(RSD,n=8)为2.7%~6.5%。该方法定性定量准确,灵敏度高,避免了复杂的样品前处理过程,可用于地下水中痕量氨基甲酸酯农药的测定。  相似文献   

6.
The applicability of an ionic liquid‐based cationic surfactant 1‐dodecyl‐3‐methyl‐imidazolium tetrafluoroborate (C12MImBF4) as pseudostationary phase in MEKC has been evaluated for the analysis of 11 carbamate pesticides (promecarb, carbofuran, metolcarb, fenobucarb, aldicarb, propoxur, asulam, benomyl, carbendazim, ethiofencarb, isoprocarb) in juice samples. Under optimum conditions (separation buffer, 35 mM NaHCO3 and 20 mM C12MImBF4, pH 9.0; capillary temperature 25°C; voltage –22 kV) the analysis was carried out in less than 12 min, using hydrodynamic injection (50 mbar for 7.5 s) and detection at 200 nm. For the extraction of these CRBs from juice samples, a dispersive liquid–liquid microextraction (DLLME) procedure has been proposed, by optimization of variables affecting the efficiency of the extraction. Following this treatment, sample throughput was approximately 12 samples per hour, obtaining a preconcentration factor of 20. Matrix‐matched calibration curves were established using tomato juice as representative matrix (from 5 to 250 μg/L for CBZ, BY, PX, CF, FEN, ETH, ISP, and 25–250 μg/L for ASL, ALD, PRC, MTL), obtaining quantification limits ranging from 1 to 18 μg/L and recoveries from 70 to 96%, with RSDs lower than 9%.  相似文献   

7.
Abstract

The degradation of the carbamate insecticides carbofuran and methiocarb in distilled and natural waters was determined. Degradation studies were carried out both under a xenon arc irradiation and natural sunlight at pesticide concentrations of 50–100 μg/L. 50–100 mL water sample were preconcentrated using automated online solid phase extraction (SPE) followed by liquid chromatography (LC), UV detection or post column fluorescence detection (EPA method 531.1 for carbamate insecticides). Structure identification was carried out by on-line SPE-LC-MS either with thermospray and/or high flow pneumatically assisted electrospray interfaces. Half-lives varying between 4–12.5 days for carbofuran and methiocarb were determined under natural sunlight exposure, being chemical hydrolysis the major degradation pathway. When using xenon arc lamp irradiation both pesticides degraded very rapidly with half-lives varying from 0.3–1.7 hours. The various degradation products identified were: methiocarb sulfoxide, 4-methylthio-3, 5-dimethylphenol, 3-hydroxy-7-carbofuranphenol and 2-hydroxy-3-(2-methylprop-1-enyl)-phenyl-N-methylcarbamate.  相似文献   

8.
Supercritical fluid carbon dioxide (SC-CO(2)) has been used to dissolve derivatizing agents (e.g. heptafluorobutyric anhydride, HFBA, and pyridine), which also act as a modifier in the fluid phase, for simultaneous extraction and derivatization of carbamates from the sample matrix. The derivatized carbamate pesticides (carbaryl, 3-hydroxycarbofuran, carbofuran, aldicarb, methiocarb) were then analyzed by GC-ECD or GC-MS with excellent sensitivity. Extraction and conversion of the carbamates was complete, as indicated by HPLC with post-column hydrolysis and o-phthalaldehyde derivatization then fluorescence detection. GC-MS (ion trap) was also used to confirm the formation of the carbamate derivatives. Compared with the same HFBA reaction in an organic solvent the derivatization reaction time was considerably shorter in SC-CO(2.) The described approach, combining both extraction and derivatization, simplifies the analysis of carbamate pesticides and eliminates the use of organic solvents associated with the derivatization step.  相似文献   

9.
Ten carbamate pesticides including four suspected endocrine disruptors, methomyl, benomyl (carbendazim), aldicarb and carbaryl, were simultaneously analyzed by LC/ESI/MS. The influence of the matrix on the variation of the ion signal intensities of (M + H)+ and adduct ions was investigated. Although the intensities of three oxamyl ions changed depending on the matrix, the variation in the concentration calculation of oxamyl was reduced by using the sum total of the area value of two ions. The limits of the quantitation of ten pesticides without a concentration procedure were from 0.4 - 30 microg/l. The solid-phase recovery rates of ten pesticides spiked into tap water and raw water were in the range of 69-111%. Using this method, the concentrations of the pesticides in tap and raw water sampled at 14 monitoring points in Hyogo Prefecture were determined. Carbendazim in three raw water samples and carbofuran in one of these three samples were detected at low concentrations (less than 0.32 microg/l).  相似文献   

10.
An interlaboratory study was conducted at 8 locations to assess the stability of pesticides on solid-phase extraction (SPE) disks after incubation at various temperatures and for various time intervals. Deionized water fortified with selected pesticides was extracted by using 2 types of SPE filtration disks (Empore C18 and Speedisk C18XF), and after extraction, the disks were incubated at 3 temperatures (25, 40, and 55 degrees C) and for 2 time intervals (4 and 14 days). Deionized water was fortified with atrazine, carbofuran, and chlorpyrifos by all participating laboratories. In addition, some of the laboratories included 2 of the following pesticides: metolachlor, metribuzin, simazine, chlorothalonil, and malathion. Concurrently, fortified water samples were extracted with the incubated samples by using each disk type at 4 and 14 days. Pesticides had equivalent or greater stability on > or = 1 of the C18 disk types, compared with storage in water. The lowest recoveries of carbofuran (6%) and chlorpyrifos (7%) were obtained at 55 degrees C after storage for 14 days in incubated water. At 55 degrees C after 14 days, the lowest recovery for atrazine was 65% obtained by using Empore disks. Pesticide-specific losses occurred on the C18 disks in this study, underlining the importance of temperature and time interval when water is extracted at remote field locations and the SPE disks containing the extracted pesticides are transported or shipped to a laboratory for elution and analysis.  相似文献   

11.
Recombinant Drosophila melanogaster acetylcholinesterase (R-DmAChE), multiwalled carbon nanotubes (MWCNTs), and Prussian blue have been combined for development of a three-electrode biosensor with more rapid responses and higher stability than in our previous study. A new disposable screen-printed electrode (SPE) was developed for rapid detection of organophosphate and carbamate pesticides. After optimization, 10 microg MWCNT and 5 microL enzyme immobilization solution consisting of 0.2% glutaraldehyde, 0.1% Nafion, 0.2% bovine serum albumin, 0.1 g/L MWCNT, and 1.5 mU R-DmAChE were fixed on each of the R-DmAChE/MWCNT SPEs. The LOD of this biosensor was 0.5 microg/L for pesticide standards of dichlorvos (DDV) and carbofuran. The performance of this biosensor was tested for vegetable and water samples at various spiked levels, and good stability and sensitivity were found. The obtained recoveries were from 82.6 to 110.5% for DDV at levels of 0.5-5 microg/L and 73.4 to 118.4% for carbofuran at 1-10 microg/L in lake and sea water samples, demonstrating that the proposed approach is an alternative means for rapid detection of pesticide residues and contaminants in food safety and environmental monitoring.  相似文献   

12.
A simple, rapid and efficient method, dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography (HPLC), has been developed for the determination of three carbamate pesticides (methomyl, carbofuran and carbaryl) in water samples. In this extraction process, a mixture of 35 µL chlorobenzene (extraction solvent) and 1.0 mL acetonitrile (disperser solvent) was rapidly injected into the 5.0 mL aqueous sample containing the analytes. After centrifuging (5 min at 4000 rpm), the fine droplets of chlorobenzene were sedimented in the bottom of the conical test tube. Sedimented phase (20 µL) was injected into the HPLC for analysis. Some important parameters, such as kind and volume of extraction and disperser solvent, extraction time and salt addition were investigated and optimised. Under the optimum extraction condition, the enrichment factors and extraction recoveries ranged from 148% to 189% and 74.2% to 94.4%, respectively. The methods yielded a linear range in the concentration from 1 to 1000 µg L?1 for carbofuran and carbaryl, 5 to 1000 µg L?1 for methomyl, and the limits of detection were 0.5, 0.9 and 0.1 µg L?1, respectively. The relative standard deviations (RSD) for the extraction of 500 µg L?1 carbamate pesticides were in the range of 1.8–4.6% (n = 6). This method could be successfully applied for the determination of carbamate pesticides in tap water, river water and rain water.  相似文献   

13.
Abstract

An automated on-line solid phase extraction procedure followed by liquid chromatography with diode array detection was investigated for the determination of different classes of pesticides in water samples containing varied amount of humic substances. The different pesticides used were: carbendazin, carbofuran, atrazine, diuron, propanil, molinate, alachlor, parathion-ethyl, diazinon, trifluralin and the degradation products deisopropylatrazine and deethylatrazine. Humic substances extracted from a Brazilian sediment were used from 5 to 80 mg/l and their influence on recoveries was evaluated in neutral and acidic media. Recoveries higher than 70% were obtained for all the pesticides, from the preconcentration of 75 ml of aqueous sample fortified at 2 ng/ml using precolumns packed with PLRP-S. Good recoveries were obtained at neutral pH for most of the analytes up to 40 mg/l of humic acid. Only at 80 mg/l the recoveries were significantly affected, both at acidic and neutral pH. The method was applied to the determination of pesticides in river water spiked at 0.1 to 1 ng/ml. Detection limits obtained for water containing 10 mg/l of humic acid were between 0.05 and 0.3 ng/ml.  相似文献   

14.
Dispersive solid-phase extraction (DSPE) cleanup combined with accelerated solvent extraction (ASE) is described here as a new approach for the extraction of carbamate pesticides in Radix Glycyrrhizae samples prior to UPLC-MS-MS. In the DSPE-ASE method, 15 carbamate pesticides were extracted from Radix Glycyrrhizae samples with acetonitrile by the ASE method at 60 °C with a 5 min heating time and two static cycles. Cleanup of a 1 mL aliquot of the extract by the DSPE method used 20 mg PSA (primary secondary amine), 50 mg Al(2)O(3)-N, and 20 mg GCB (graphitized carbon black) (as cleanup sorbents) under the determined optimum conditions. The linearity of the method was in the range of 10 to 200 ng/mL with correlation coefficients (r(2)) of more than 0.996. The limits of detection were approximately 0.2 to 5.0 μg/kg. The method was successfully used for the analysis of target pesticides in Radix Glycyrrhizae samples. The recoveries of the carbamate pesticides at the spiking levels of 50, 100, and 200 μg/kg ranged from 79.7% to 99.3% with relative standard deviations lower than 10%. This multi-residue analytical method allows for a rapid, efficient, sensitive and reliable determination of target pesticides in Radix Glycyrrhizae and other medicinal herbs.  相似文献   

15.
A method is described for the determination of aldicarb and its metabolites (the sulphoxide and sulphone) in urine by gas chromatography with flame photometric detection (GC-FPD). The sample was concentrated with a column containing activated charcoal and Florisil, and then eluted with dichloromethane-acetone (1:1, v/v). The aldicarb and aldicarb sulphoxide in the eluate solution were oxidized to aldicarb sulphone and the total sulphone concentration was determined by GC-FPD after extraction with dichloromethane and clean-up with an activated charcoal column. The detection limit was 0.0024 mg/l. The mean recoveries from spiked urine in the range 0.04-0.12 mg/l were 90.9%, 86.6%, 92.6% for aldicarb, aldicarb sulphoxide and aldicarb sulphone, respectively.  相似文献   

16.
Fung YS  Mak JL 《Electrophoresis》2001,22(11):2260-2269
A new analytical procedure using a two-step sample preconcentration (solid-phase extraction (SPE) and field-amplified sample stacking) prior to separation by micellar electrokinetic capillary chromatography was developed for the determination of 14 pesticides such as aldicarb, carbofuran, isoproturon, chlorotoluron, metolachlor, mecoprop, dichlorprop, MCPA, 2,4-D, methoxychlor, TDE, DDT, dieldrin, and DDE in drinking water. Good recoveries of pesticides were obtained using SPE with sample pH adjusted to 2-3. Field-amplified sample stacking was found to give enrichment factors up to 30-fold preconcentration of various pesticides under reversed polarity at -2 kV for 50 s. The optimized background electrolyte (BGE) consisted of 50 mM sodium dodecyl sulfate (SDS), 10 mM borate buffer, 15 mM beta-cyclodextrin (beta-CD), and 22% acetonitrile at pH 9.6, running was under 25 kV and detection at 202 nm. Good linearity was obtained for all pesticides with detection limits down to 0.04-0.46 ng/mL and a working range of 0.1-40 ng/mL. The repeatabilities of migration time and peak area were satisfactory with relative standard deviations (RSDs) between 0.66 and 13.6% and 4.1 and 28%, respectively. All pesticides except dieldrin were found to be detected at concentrations at least tenfold lower than the World Health Organization (WHO) guideline values. The analytical procedure developed offers an economic method for fast screening of multiple pesticide residues in drinking water for health protection. It had been applied to determine carbofuran and MCPA in agricultural run-off water samples, giving satisfactory repeatabilities of 10 and 12%, respectively, with n=5 for the determination of pesticides in contaminated water samples.  相似文献   

17.
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in watermelon and tomato samples was developed by dispersive liquid–liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detection (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimised to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 10 to 1000?ng?g?1 for all the five carbamate pesticides, with the correlation coefficients (r) varying from 0.9982 to 0.9992. Good enrichment factors were achieved ranging between 80 and 177, depending on the compound. The limits of detection (LODs) (S/N?=?3) were ranged from 0.5 to 1.5?ng?g?1. The method has been successfully applied to the analysis of the pesticide residues in watermelon and tomato samples. The recoveries of the method fell in the range between 76.2% to 94.5% with RSDs less than 9.6%, indicating the feasibility of the DLLME method for the determination of the five carbamate pesticides in watermelon and tomato samples.  相似文献   

18.
A fully automated system for on-line solid phase extraction (SPE) followed by high-performance liquid chromatography (HPLC) with tandem detection with a photodiode array detector and a fluorescence detector (after postcolumn derivatization) was developed for analysis of many chemical classes of pesticides and their major conversion products in aquatic systems. An automated on-line-SPE system (Prospekt) operated with reversed-phase cartridges (PRP-1) extracts analytes from 100 mL acidified (pH = 3) filtered water sample. On-line HPLC analysis is performed with a 15 cm C18 analytical column eluted with a mobile phase of phosphate (pH = 3)-acetonitrile in 25 min linear gradient mode. Solutes are detected by tandem diode array/derivatization/fluorescence detection. The system is controlled and monitored by a single computer operated with Millenium software. Recoveries of most analytes in samples fortified at 1 microgram/L are > 90%, with relative standard deviation values of < 5%. For a few very polar analytes, mostly N-methylcarbamoyloximes (i.e., aldicarb sulfone, methomyl, and oxamyl), recoveries are < 20%. However, for these compounds, as well as for the rest of the N-methylcarbamates except for aldicarb sulfoxide and butoxycarboxim, the limits of detection (LODs) are 0.005-0.05 microgram/L. LODs for aldicarb sulfoxide and butoxycarboxim are 0.2 and 0.1 microgram, respectively. LODs for the rest of the analytes except 4-nitrophenol, bentazone, captan, decamethrin, and MCPA are 0.05-0.1 microgram/L. LODs for the latter compounds are 0.2-1.0 microgram/L. The system can be operated unattended.  相似文献   

19.
杨欣  李鹏  苗虹  赵云峰  吴永宁 《色谱》2014,32(5):499-505
建立了高效液相色谱-线性离子阱质谱(HPLC-LIT-MS)测定膳食样品中氨基甲酸酯类农药的检测方法。样品中加入同位素内标,用正己烷饱和的乙腈超声提取,凝胶渗透色谱净化。以乙腈和含5 mmol/L甲酸铵和0.1%(v/v)甲酸的水溶液为流动相,目标化合物经CAPCELL PAK CR (100 mm×2.1 mm,5 μm;SCX-C18 (1:4))色谱柱分离,梯度洗脱,流速0.2 mL/min。采用电喷雾电离,选择反应监测(SRM)正离子模式三级离子监测。内标法定量。膳食类样品中氨基甲酸酯农药的平均加标回收率在60.4%~114%之间;相对标准偏差在3.46%~16.2%范围内;检出限(LODs)在0.001~0.010 mg/kg之间。应用所建立的方法对2007年第四次中国总膳食研究项目的9类膳食样品基质中的氨基甲酸酯类农药进行了检测,在少量样品中检出了涕灭威和克百威。  相似文献   

20.
Liu W  Lee HK 《Talanta》1998,45(4):631-639
High performance liquid chromatography (HPLC) combined with solid-phase extraction was reported on, for simultaneous analysis of pesticides in this work. The separation of 12 pesticides was achieved on a C(18) capillary column with gradient elution. Sub-microlitre injection volume of the samples and a U-shaped 35 nl flow cell were used to improve the separation and detection. In addition, the method used C(18) solid-phase extraction disks to allow a 250-fold enrichment of the pesticides from fortified water and apple samples. The calculated detection limits range was 0.15-0.8 mug/l. Under the optimal extraction conditions, recoveries of 85-107% for most of the pesticides at 1.0-10.0 mug/l level, were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号