首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new immersed‐boundary method for simulating flows over complex immersed, moving boundaries is presented. The flow is computed on a fixed Cartesian mesh and the solid boundaries are allowed to move freely through the mesh. The present method is based on a finite‐difference approach on a staggered mesh together with a fractional‐step method. It must be noted that the immersed boundary is generally not coincident with the position of the solution variables on the grid, therefore, an appropriate strategy is needed to construct a relationship between the curved boundary and the grid points nearby. Furthermore, a momentum forcing is added on the body boundaries and also inside the body to satisfy the no‐slip boundary condition. The immersed boundary is represented by a series of interfacial markers, and the markers are also used as Lagrangian forcing points. A linear interpolation is then used to scale the Lagrangian forcing from the interfacial markers to the corresponding grid points nearby. This treatment of the immersed‐boundary is used to simulate several problems, which have been validated with previous experimental results in the open literature, verifying the accuracy of the present method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
We present an extended finite element method (XFEM) for the direct numerical simulation of the flow of viscoelastic fluids with suspended particles. For moving particle problems, we devise a temporary arbitrary Lagrangian–Eulerian (ALE) scheme which defines the mapping of field variables at previous time levels onto the computational mesh at the current time level. In this method, a regular mesh is used for the whole computational domain including both fluid and particles. A temporary ALE mesh is constructed separately and the computational mesh is kept unchanged throughout the whole computations. Particles are moving on a fixed Eulerian mesh without any need of re-meshing. For mesh refinements around the interface, we combine XFEM with the grid deformation method, in which nodal points are redistributed close to the interface while preserving the mesh topology. Our method is verified by comparing with the results of boundary fitted mesh problems combined with the conventional ALE scheme. The proposed method shows similar accuracy compared with boundary fitted mesh problems and superior accuracy compared with the fictitious domain method. If the grid deformation method is combined with XFEM, the required computational time is reduced significantly compared to uniform mesh refinements, while providing mesh convergent solutions. We apply the proposed method to the particle migration in rotating Couette flow of a Giesekus fluid. We investigate the effect of initial particle positions, the Weissenberg number, the mobility parameter of the Giesekus model and the particle size on the particle migration. We also show two-particle interactions in confined shear flow of a viscoelastic fluid. We find three different regimes of particle motions according to initial separations of particles.  相似文献   

3.
A Finite Element Method in mixed Eulerian and Lagrangian formulation is developed to allow direct numerical simulations of dynamical interaction between an incompressible fluid and a hyper-elastic incompressible solid. A Fictitious Domain Method is applied so that the fluid is extended inside the deformable solid volume and the velocity field in the entire computational domain is resolved in an Eulerian framework. Solid motion, which is tracked in a Lagrangian framework, is imposed through the body force acting on the fluid within the solid boundaries. Solid stress smoothing on the Lagrangian mesh is performed with the Zienkiewicz–Zhu patch recovery method. High-order Gaussian integration quadratures over cut elements are used in order to avoid sub-meshing within elements in the Eulerian mesh that are intersected by the Lagrangian grid. The algorithm is implemented and verified in two spatial dimensions by comparing with the well validated simulations of solid deformation in a lid driven cavity and periodic elastic wall deformation driven by a time-dependent flow. It shows good agreement with the numerical results reported in the literature. In 3-D the method is validated against previously reported numerical simulations of 3-D rhythmically contracting alveolated ducts.  相似文献   

4.
We present an improved immersed boundary method for simulating incompressible viscous flow around an arbitrarily moving body on a fixed computational grid. To achieve a large Courant–Friedrichs–Lewy number and to transfer quantities between Eulerian and Lagrangian domains effectively, we combined the feedback forcing scheme of the virtual boundary method with Peskin's regularized delta function approach. Stability analysis of the proposed method was carried out for various types of regularized delta functions. The stability regime of the 4‐point regularized delta function was much wider than that of the 2‐point delta function. An optimum regime of the feedback forcing is suggested on the basis of the analysis of stability limits and feedback forcing gains. The proposed method was implemented in a finite‐difference and fractional‐step context. The proposed method was tested on several flow problems, including the flow past a stationary cylinder, inline oscillation of a cylinder in a quiescent fluid, and transverse oscillation of a circular cylinder in a free‐stream. The findings were in excellent agreement with previous numerical and experimental results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A modified front‐tracking method was proposed for the simulation of fluid‐flexible body interactions with large deformations. A large deformable body was modeled by restructuring the body using a grid adaptation. Discontinuities in the viscosity at the fluid‐structure interface were incorporated by distributing the viscosity across the interface using an indicator function. A viscosity gradient field was created near the interface, and a smooth transition occurred between the structure and the fluid. The fluid motion was defined on the Eulerian domain and was solved using the fractional step method on a staggered Cartesian grid system. The solid motion was described by Lagrangian variables and was solved by the finite element method on an unstructured triangular mesh. The fluid motion and the structure motion were independently solved, and their interaction force was calculated using a feedback law. The interaction force was the restoring force of a stiff spring with damping, and spread from the Lagrangian coordinates to the Eulerian grid by a smoothed approximation of the Dirac delta function. In the numerical simulations, we validated the effect of the grid adaptation on the solid solver using a vibrating circular ring. The effects of the viscosity gradient field were verified by solving the deformation of a circular disk in a linear shear flow, including an elastic ring moving through a channel with constriction, deformation of a suspended catenary, and a swimming jellyfish. A comparison of the numerical results with the theoretical solutions was presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes a new immersed boundary (IB) method for solving fluid flow problems in the presence of rigid objects which are not represented by the mesh. Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Important benefit would be reached if we are able to solve the flow without the need of generating a mesh that fits the shape of the immersed objects. This work presents a finite element IB method using a discretization covering the entire domain of interest, including the volume occupied by immersed objects, and which produces solutions of the flow satisfying accurately the boundary conditions at the surface of immersed bodies. In other words the finite element solution represents accurately the presence of immersed bodies while the mesh does not. This is done by including additional degrees of freedom on interface cut elements which are then eliminated at element level. The boundary of immersed objects is defined using a level set function. Solutions are shown for various flow problems and the accuracy of the present approach is measured with respect to solutions obtained on body‐fitted meshes. Copyright © 2010 Crown in the right of Canada.  相似文献   

8.
In this study,we present adaptive moving boundary computation technique with parallel implementation on a distributed memory multi-processor system for large scale thermo-fluid and interfacial flow computations.The solver utilizes Eulerian-Lagrangian method to track moving(Lagrangian) interfaces explicitly on the stationary(Eulerian) Cartesian grid where the flow fields are computed.We address the domain decomposition strategies of Eulerian-Lagrangian method by illustrating its intricate complexity of the computation involved on two different spaces interactively and consequently,and then propose a trade-off approach aiming for parallel scalability.Spatial domain decomposition is adopted for both Eulerian and Lagrangian domain due to easy load balancing and data locality for minimum communication between processors.In addition,parallel cell-based unstructured adaptive mesh refinement(AMR) technique is implemented for the flexible local refinement and even-distributed computational workload among processors.Selected cases are presented to highlight the computational capabilities,including Faraday type interfacial waves with capillary and gravitational forcing,flows around varied geometric configurations and induced by boundary conditions and/or body forces,and thermo-fluid dynamics with phase change.With the aid of the present techniques,large scale challenging moving boundary problems can be effectively addressed.  相似文献   

9.
When the structural wall moves over a fixed grid, the structure coverage will change, resulting in many dead and emerging elements. To avoid the influence of malformation and reconstruction of body-fitted grids on the calculation efficiency and accuracy of the fluid-structure interaction problems with coupled boundary movement on the fixed grid, an improved numerical method for describing the interaction between an immersed rigid body and fluid based on a sharp-interface is proposed. In this method, both the fluid and solid are regarded as pure fluid domains in the whole computational domain, and the solid boundary is divided into several Lagrangian grid points. The flow parameter or velocity is reconstructed by interpolation at the interface element, which is then directly used as the boundary condition of the flow field, thus reflecting the influence of the wall boundary conditions. The method constructs the calculation structure of “virtual point, force point and vertical foot point”, and the velocity of the virtual point is obtained by bilinear interpolation. Then, the velocity of the force point is calculated by forcing the solid boundary to meet the no-slip condition, and the equations of the coupling system based on the immersion boundary method are finally solved to realize the numerical simulation of the flow with a complex moving boundary. The numerical program for this immersed boundary method is established using C++, then the accuracy and reliability of the proposed method are validated by comparison with the literature and experimental results of the basic numerical example of flow around a cylinder. Furthermore, the effects of the structural shape and the angle of attack on the trailing vortex structure, the vortex shedding frequency, and the lift/ coefficient characteristics of the flow around the elliptical cylinder have been analyzed. The anti-symmetric S-type, “P+S” Ⅰ-type and “P+S” Ⅱ-type trailing vortex shedding modes, as well as the variation laws of the vortex structure size, vortex shedding frequency and lift-drag coefficients ratio with axis ratio and angle of attack, are captured. The critical angle of attack (25°) corresponding to the maximum lift-drag ratio is determined as 25°.  相似文献   

10.
11.
In this work a mixed Eulerian–Lagrangian technique is devised, hereinafter abbreviated as ELAFINT (Eulerian–Lagrangian Algorithm For INterface Tracking). The method is capable of handling fluid flows in the presence of both irregularly shaped solid boundaries and moving/free phase boundaries. The position and shape of the boundary are tracked explicitly by the Lagrangian translation of marker particles. The field equations are solved on an underlying fixed grid as in Eulerian methods. The interface passes through the grid lay-out and details regarding the treatment of the cut cells so formed are provided. The issues involved in treating the internal boundaries are dealt with, with particular attention to conservation and consistency in the vicinity of the interface. The method is tested by comparing with solutions from well-tested body-fitted co-ordinate methods. Test cases pertaining to forced and natural convection in irregular geometries and moving phase boundaries with melt convection are presented. The capability developed here can be beneficial in solving difficult flow problems involving moving and geometrically complex boundaries.  相似文献   

12.
13.
For simulating freely moving problems, conventional immersed boundary‐lattice Boltzmann methods encounter two major difficulties of an extremely large flow domain and the incompressible limit. To remove these two difficulties, this work proposes an immersed boundary‐lattice Boltzmann flux solver (IB‐LBFS) in the arbitrary Lagragian–Eulerian (ALE) coordinates and establishes a dynamic similarity theory. In the ALE‐based IB‐LBFS, the flow filed is obtained by using the LBFS on a moving Cartesian mesh, and the no‐slip boundary condition is implemented by using the boundary condition‐enforced immersed boundary method. The velocity of the Cartesian mesh is set the same as the translational velocity of the freely moving object so that there is no relative motion between the plate center and the mesh. This enables the ALE‐based IB‐LBFS to study flows with a freely moving object in a large open flow domain. By normalizing the governing equations for the flow domain and the motion of rigid body, six non‐dimensional parameters are derived and maintained to be the same in both physical systems and the lattice Boltzmann framework. This similarity algorithm enables the lattice Boltzmann equation‐based solver to study a general freely moving problem within the incompressible limit. The proposed solver and dynamic similarity theory have been successfully validated by simulating the flow around an in‐line oscillating cylinder, single particle sedimentation, and flows with a freely falling plate. The obtained results agree well with both numerical and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Time consuming meshing can be avoided when the solution algorithm can tackle grids that do not fit the shape of immersed objects. This work presents applications of a recently proposed immersed boundary—body conformal enrichment method to the solution of the flow around complex shaped surfaces such as those of a metallic foam matrix. The method produces solutions of the flow satisfying accurately Dirichlet boundary conditions imposed on the immersed fluid/solid interface. The boundary of immersed objects is defined using a level‐set function, and the finite element discretization of interface elements is enriched with additional degrees of freedom, which are eliminated at element level. The method is first validated in the case of flow problems for which reference solutions on body‐conformal grids can be obtained: flow around an array of spheres and flow around periodic arrays of cylinders. Then, solutions are shown for the more complex flow inside a metallic foam matrix. A multiscale approach combining the solution at the pore level by the immersed boundary method and the macro‐scale solution with simulated permeability is used to solve actual experimental configurations. The computed pressure drop as a function of the flow rate on the macro scale configuration replicating two experimental setups is compared with the experimental data for various foam thicknesses. Copyright © 2011 National Research Council Canada  相似文献   

15.
In this article, we propose a simple area‐preserving correction scheme for two‐phase immiscible incompressible flows with an immersed boundary method (IBM). The IBM was originally developed to model blood flow in the heart and has been widely applied to biofluid dynamics problems with complex geometries and immersed elastic membranes. The main idea of the IBM is to use a regular Eulerian computational grid for the fluid mechanics along with a Lagrangian representation of the immersed boundary. Using the discrete Dirac delta function and the indicator function, we can include the surface tension force, variable viscosity and mass density, and gravitational force effects. The principal advantage of the IBM for two‐phase fluid flows is its inherent accuracy due in part to its ability to use a large number of interfacial marker points on the interface. However, because the interface between two fluids is moved in a discrete manner, this can result in a lack of volume conservation. The idea of an area preserving correction scheme is to correct the interface location normally to the interface so that the area remains constant. Various numerical experiments are presented to illustrate the efficiency and accuracy of the proposed conservative IBM for two‐phase fluid flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, the immersed element‐free Galerkin method (IEFGM) is proposed for the solution of fluid–structure interaction (FSI) problems. In this technique, the FSI is represented as a volumetric force in the momentum equations. In IEFGM, a Lagrangian solid domain moves on top of an Eulerian fluid domain that spans over the entire computational region. The fluid domain is modeled using the finite element method and the solid domain is modeled using the element‐free Galerkin method. The continuity between the solid and fluid domains is satisfied by means of a local approximation, in the vicinity of the solid domain, of the velocity field and the FSI force. Such an approximation is achieved using the moving least‐squares technique. The method was applied to simulate the motion of a deformable disk moving in a viscous fluid due to the action of the gravitational force and the thermal convection of the fluid. An analysis of the main factors affecting the shape and trajectory of the solid body is presented. The method shows a distinct advantage for simulating FSI problems with highly deformable solids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The lattice Boltzmann method (LBM) is a useful technique for simulating multiphase flows and modeling complex physics. Specifically, we use LBM combined with a direct-forcing (DF) immersed boundary (IB) method to simulate fluid–particle interactions in two-phase particulate flows. Two grids are used in the simulation: a fixed uniform Eulerian grid for the fluid phase and a Lagrangian grid that is attached to and moves with the immersed particles. Forces are calculated at each Lagrangian point. To exchange numerical information between the two grids, discrete delta functions are used. The resulting DF IB-LBM approach is then successfully applied to a variety of reference flows, namely the sedimentation of one and two circular particles in a vertical channel, the sedimentation of one or two spheres in an enclosure, and a neutrally buoyant prolate spheroid in a Couette flow. This last application proves that the developed approach can be used also for non-spherical particles. The three forcing schemes and the different factors affecting the simulation (added mass effect, corrected radius) are also discussed.  相似文献   

18.
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies.  相似文献   

19.
A numerical method is developed for modelling the interactions between incompressible viscous fluid and moving boundaries. The principle of this method is introducing the immersed‐boundary concept in the framework of the lattice Boltzmann method, and improving the accuracy and efficiency of the simulation by refining the mesh near moving boundaries. Besides elastic boundary with a constitutive law, the method can also efficiently simulate solid moving‐boundary interacting with fluid by employing the direct forcing technique. The method is validated by the simulations of flow past a circular cylinder, two cylinders moving with respect to each other and flow around a hovering wing. The versatility of the method is demonstrated by the numerical studies including elastic filament flapping in the wake of a cylinder and fish‐like bodies swimming in quiescent fluid. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A new finite‐volume flow solver based on the hybrid Cartesian immersed boundary (IB) framework is developed for the solution of high‐speed inviscid compressible flows. The IB method adopts a sharp‐interface approach, wherein the boundary conditions are enforced on the body geometry itself. A key component of the present solver is a novel reconstruction approach, in conjunction with inverse distance weighting, to compute the solutions in the vicinity of the solid‐fluid interface. We show that proposed reconstruction leads to second‐order spatial accuracy while also ensuring that the discrete conservation errors diminish linearly with grid refinement. Investigations of supersonic and hypersonic inviscid flows over different geometries are carried out for an extensive validation of the proposed flow solver. Studies on cylinder lift‐off and shape optimisation in supersonic flows further demonstrate the efficacy of the flow solver for computations with moving and shape‐changing geometries. These studies conclusively highlight the capability of the proposed IB methodology as a promising alternative for robust and accurate computations of compressible fluid flows on nonconformal Cartesian meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号