首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have formed conjugated polymeric aniline–thiophene organic material on p-Si substrate by adding polyaniline–poly-3-methyl thiophene blend solution in acetonitrile on top of a p-Si substrate and then evaporating the solvent. It has been seen that the forward bias current–voltage (IV) characteristics of polyaniline–poly-3-methyl thiophene blend/p-Si/Al with a barrier height value of 0.60 eV and an ideality factor value of 3.37 showed rectifying behaviour at room temperature. The polyaniline–poly-3-methyl thiophene blend/p-Si/Al Schottky barrier diode showed non-ideal IV behaviour with the value of ideality factor greater than unity that could be ascribed to the interfacial layer, interface states and series resistance. Furthermore, Cheung's functions and modified Norde's function were used to extract the diode parameters including ideality factor, barrier height and series resistance. It has been seen that there is a good agreement between the barrier height values from all methods. However, the values of series resistance obtained from Cheung's functions is higher than the values obtained from Norde's functions. The energy distribution of interface states density, determined from forward bias current–voltage (IV) characteristic technique at room temperature, increases exponentially with bias from 2.81 × 1016 cm?2 eV?1 in (0.73–Ev) eV to 1.14 × 1017 cm?2 eV?1 in (0.48–Ev) eV.  相似文献   

2.
The glasses within composition as: (80 − x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25–35 nm and 30–46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ε′, activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh, β, decrease from 51.63 to 0.31 × 106 (s−1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.  相似文献   

3.
The crystal structure of an Li-bearing double-ring silicate mineral, sogdianite ((Zr1.18Fe3+0.55Ti0.24Al0.03)(?1.64,Na0.36)K0.85[Li3Si12O30], P6/mcc, a≈10.06 Å, c≈14.30 Å, Z=2), was investigated by neutron powder diffraction from 300 up to 1273 K. Rietveld refinements of displacement parameters revealed high anisotropic Li motions perpendicular to the crystallographic c-axis, indicating an exchange process between tetrahedral T2 and octahedral A sites. AC impedance spectra of a sogdianite single crystal (0.04×0.09×0.25 cm3) show that the material is an ionic conductor with conductivity values of σ=4.1×10−5 S cm−1 at 923 K and 1.2×10−3 S cm−1 at 1219 K perpendicular to the c-axis, involving two relaxation processes with activation energies of 1.26(3) and 1.08(3) eV, respectively.  相似文献   

4.
A series of macrobicyclic unsymmetrical binuclear copper(II) complexes of compartmental ligands were synthesized from the Schiff base condensation of 1,8[N,N′-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}]-1,4,8,11- tetraaza-5,5,7,12,12,14-hexa methylcyclotetradecane with diamines like 1,2-diamino ethane, 1,3-diamino propane, 1,4-diaminobutane, 1,2-diaminobenzene and 1,8-diaminonaphthalene. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the copper(II) complexes show two irreversible one-electron reduction processes around E1pc = −0.70 to −1.10 V and E2pc = −0.98 to −1.36 V. ESR spectra of the binuclear copper(II) complexes show a broad signal at g = 2.10 and μeff values in the range 1.46–1.59 BM, which convey the presence of antiferromagnetic coupling. Cryomagnetic investigation of the binuclear complexes [Cu2L3(ClO4)](ClO4) and [Cu2L4(ClO4)](ClO4) show that the observed −2J values are 144 and 216 cm−1, respectively. The observed initial rate (Vin) for the catalytic hydrolysis of p-nitrophenyl phosphate by the binuclear copper(II) complexes were in the range 1.8 × 10−5 to 2.1 × 10−5 Ms−1. The initial rate (Vin) for the catalytic oxidation of catechol to o-quinone by the binuclear copper(II) complexes were in the range 2.7 × 10−5 to 3.5 × 10−5 Ms−1. The copper(II) complexes have been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II.  相似文献   

5.
The excimer lifetime τD and the excimer fluorescence efficiency for 1-methylnaphthalene in ethanol have been determined between −30 and 60°C. Expressing the rate constant for excimer deactivation. kD, in terms of radiative kFD) and nonradiative (kID) processes as kD = kFD + kID it is found that kFD is independent of tempeature and kID = 5 × 106 + 3.2 × 1011 exp (-ΔE/RT) sec−1, where ΔE = 6.7 kcal mole−1. The behaviour of kFD and kID with temperature and the appearance of isoemissive points in a limited region of temperature are discussed.  相似文献   

6.
Interfacial analysis has attracted more and more attention owing to its fundamental and biological importance. Total internal reflection fluorescence (TIRF) spectroscopy is a useful method to study interfacial properties. The synchronous scanning fluorescence technique provides a selective tool to analyze a specific component in a complex system. The interaction and adsorption of bovine serum albumin (BSA) and meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) at toluene-water interface were studied successfully by the coupling technique of total internal reflection synchronous fluorescence (TIRSF). New methods are provided for the determination of the critical micelle concentration (cmc), apparent adsorption equilibrium constant (Kad) and maximum amount of adsorption (fmax) at the liquid-liquid interface. The results indicated that BSA could adsorb onto the toluene-water interface as a complex of BSA-TPPS in a ratio of 1:1 ratio based on Langmuir adsorption isothermal model. The cmc, apparent Kad and fmax for BSA at pH 3.1 were determined to be 1.0 × 10−4 mol L−1, 1.15 × 105 L mol−1 and 1.14 × 10−9 mol cm−2, respectively.  相似文献   

7.
The dependence of Th recovery on hydrofluoric acid (HF) concentration in nitric acid (HNO3) solutions (1–5 mol/dm3) containing 1 × 10−6 mol/dm3 of Th and various concentrations of HF and the elution behavior were studied using a commercially available UTEVA (for uranium and tetravalent actinide) resin column. Thorium recovery decreased with an increase in HF concentration in the sample solutions. The concentration of HF at which Th recovery started to decrease was ∼1 × 10−4 mol/dm3 in 1 mol/dm3 HNO3 solution, ∼1 × 10−3 mol/dm3 in 3 mol/dm3 HNO3 solution, and ∼1 × 10−2 mol/dm3 in 5 mol/dm3 HNO3 solution. When Al(NO3)3 (0.2 mol/dm3) or Fe(NO3)3 (0.6 mol/dm3) was added as a masking agent for F to the Th solution containing 1 × 10−1 mol/dm3 HF and 1 mol/dm3 HNO3, Th recovery improved from 1.4 ± 0.3% to 95 ± 5% or 93 ± 3%. Effective extraction of Th using UTEVA resin was achieved by selecting the concentration of HNO3 and/or adding masking agents such as Al(NO3)3 according to the concentration of HF in the sample solution.  相似文献   

8.
9.
The quantum chemical calculations are executed for a series of designed carbazole-based oligothiophene systems (CPTR1 and CPTD2-CPTD8) having D11-D22-A architecture. The effect of addition of π-linkers on designed architecture for the electronic and non-linear optical response was examined at M06/6-311G(d,p) level of theory. The frontier molecular orbitals (FMOs), density of states (DOS), natural population analysis (NPA), UV–Vis and transition density matrix (TDM) and non-linear optical (NLO) analyses were utilized in order to comprehend key electronic and non-linear optical response. All the designed molecules exhibited a lower energy gap (ELUMO-EHOMO) as 2.434–2.780 eV, as compared to the CPTR1 (2.875 eV). Among all the derivatives, CPTD8 exhibited the highest dipole polarizability 〈α〉 and second hyperpolarizability (γtot) as 2.946 × 10-22 esu and 41.372 × 10-33 esu, respectively. Dipole moment (µ) and first hyperpolarizability (βtot) of CPTD8 were found to be as 3.478 D and 118.886 × 10-29 esu, correspondingly. The second hyperpolarizability (γtot) of CPTD8 was observed to be ∼6.4 ∼4.0 ∼2.5 ∼1.8 ∼1.4 ∼1.3 and ∼1.1 times higher in comparison to CPTR1 and CPTD2-CPTD7, respectively. It is concluded that carbazole-based oligothiophene might be used as a potential material in optoelectronic devices.  相似文献   

10.
Zhao YD  Bi YH  Zhang WD  Luo QM 《Talanta》2005,65(2):489-494
Direct electrochemistry of hemoglobin (Hb) is observed at carbon nanotube (CNT) interface. The adsorbing Hb can transfer electron directly at CNT interface compared with common carbon material. The heterogeneous electron transfer rate constant k of Hb can be calculated as 0.062 s−1, the transfer coefficient α is 0.21 and the average surface coverage of Hb on CNT surface is 3.58 × 10−9 ± 2.7 × 10−10 mol/cm2. It is found that the adsorbing Hb still keeps its catalytic activity to H2O2. This sensor was used to detect H2O2. The apparent Michaelis-Menten constant is calculated as 6.75 × 10−4 mol L−1.  相似文献   

11.
The intra- and the inter-chain magnetic interactions in [Ni(chxn)2Br]Br2, which is one of the typical one-dimensional (1-D) MX complexes are examined by using an unrestricted hybrid DFT (UB3LYP) method. Calculated effective exchange integral (J) value along the 1-D chain is 2JIntra = −4016 K and is close to an experimental result (−3600 K). On the other hand, a very weak anti-ferromagnetic inter-chain interaction through Br ions is observed. The value is estimated to be 2JInter = −2 to −6 K. In addition to the J values, transfer integral (t), on-site Coulomb repulsion (U) and charge transfer energy (ECT) values along the 1-D chain are also estimated to be 0.46, 2.46 and 0.6 eV, respectively.  相似文献   

12.
TiO2 is a polymorphic material of great scientific interest due to its semiconductor properties and uses in heterogeneous photocatalysis. Understanding the stability of the polymorphs is important for designing TiO2-based photocatalysts and solar cells. Although the phase transformation of anatase→rutile has been well studied, there is only one published work on brookite→rutile to date. The brookite→rutile transformation has been studied in this work using natural material from the Magnet Cove igneous complex mechanically processed to several micrometers in size. The pure phase brookite is annealed from 800 to 900 °C without detection of the anatase polymorph. The transformation kinetics are described by both the standard first-order model, with an activation energy of Ea=411.91 kJ/mol, and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, with an activation energy of Ea=492.13 kJ/mol. The rate parameter of the first-order model for the phase transformation is expressed as k=6.85×1014 exp(−49,451/T) s−1 for the first-order model and k=4.19×1018 exp(−59,189/T) s−1 using the JMAK model. The obtained activation energy is higher than that of brookite nano-crystals. Our results show that the JMAK model fits the kinetics data better than other models.  相似文献   

13.
Oxy-silicate and oxy-germanate, Ln2(TO4)O (Ln=La and Nd, T=Ge and Si) compounds have been prepared. Oxy-germanates can be readily obtained as highly crystalline single phases, while, the oxy-silicates are difficult to prepare as pure phases. The crystal structure of Nd2(SiO4)O has been studied from a joint Rietveld refinement of neutron and laboratory X-ray powder diffraction data. The electrochemical characterisation indicates that these compounds display oxide anion conductivity with p-type electronic contribution under oxidising conditions. The apparent activation energies under dry flowing nitrogen, where p-type contribution is minimised, are 0.97(1), 1.05(3) and 1.17(4) eV, for Nd2(SiO4)O, La2(GeO4)O and Nd2(GeO4)O, respectively. The overall conductivities at 1173 K range from 1.2×10−4 S cm−1 for Nd2(SiO4)O to 1.3×10−6 S cm−1 for La2(GeO4)O. Finally, the stability of these compounds under very reducing conditions has been studied and partial degradation is reported.  相似文献   

14.
A new method for the pretreatment of screen-printed carbon electrodes (SPCEs) by two successive steps was proposed. In step one, fresh SPCEs were soaked into NaOH with high concentration (e.g. 3 M) for tens to hundreds of minutes, and the resulted electrodes were called as SPCE-I. In step two, SPCE-I were pre-anodized in low concentration of NaOH, which were designated as SPCE-II. The pretreated electrodes showed remarkable enhancement in heterogeneous electron transfer rate constant (k0) increased from 1.6 × 10−4 cm s−1 at the fresh SPCE to 1.1 × 10−2 cm s−1 at SPCE-I for Fe(CN)63−/4− couple. The peak to peak separation (ΔEp) in cyclic voltammetry was reduced from ca. 480 to 84 mV, indicating that the electrochemical reversibility was greatly promoted, possibly due to the removing of polymers/oil binder from the electrode surfaces. The electroactive area (Aea) of the electrode was increased by a factor of 17 after pretreatment in step one. Further analysis by the electrochemical impedance method showed that the electron transfer resistance (Rct) decreased from ca. 2100 to 1.4 Ω. These pretreated electrodes, especially SPCE-II, exhibited excellent electrocatalytic behavior for the redox of dopamine (DA). Interference from ascorbic acid (AA) in the detection of DA at SPCE-II could be effectively eliminated due to the anodic peak separation (190 mV) between DA and AA, which resulted from the functionalization of the electrode surface in the pretreatment of step two. Under optimum conditions, current responses to DA were linearly changed in two concentration intervals, one was from 3.0 × 10−7 to 9.8 × 10−6 M, and the other was from 9.8 × 10−6 to 3.3 × 10−4 M. The detection limit for DA was down to 1.0 × 10−7 M.  相似文献   

15.
Chen Y  Su YH  Zheng LM  Xia XH 《Talanta》2010,83(1):145-148
The electrochemistry of a macrocyclic metal complex Fe(notpH3) [notpH6 = 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylene-phosphonic acid)] reveals that the protonation/deprotonation of the non-coordinated P-OH groups in Fe(notpH3) affects its formal potential value (E0′) considerably. Plotting E0′ as function of solution pH gives a straight line with a slope of −585 mV pH−1 in the pH range of 3.4-4.0, which is about ten times larger than the theoretical value of −58 mV pH−1 for a reversible proton-coupled single-electron transfer at 20 °C. A sensitive pH responsive electrochemical switch sensor is thus developed based on Fe(notpH3) which shows an “on/off” switching at pH ∼ 4.0.  相似文献   

16.
The enthalpy increments and the standard molar Gibbs energy of formation of NdFeO3(s) have been measured using a high-temperature Calvet microcalorimeter and a solid oxide galvanic cell, respectively. A λ-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at ∼687 K. Enthalpy increments, except in the vicinity of transition, can be represented by a polynomial expression: {H°m(T)−H°m(298.15 K)}/J·mol−1 (±0.7%)=−53625.6+146.0(T/K) +1.150×10−4(T/K)2 +3.007×106(T/K)−1; (298.15≤T/K ≤1000). The heat capacity, the first differential of {H°m(T)−H°m(298.15 K)} with respect to temperature, is given by Cop, m/J·K−1·mol−1=146.0+2.30×10−4(T/K)−3.007×106(T/K)−2. The reversible emf's of the cell, (−) Pt/{NdFeO3(s) +Nd2O3(s)+Fe(s)}//YDT/CSZ//{Fe(s)‘FeO’(s)}/Pt(+), were measured in the temperature range from 1004 to 1208 K. It can be represented within experimental error by a linear equation: E/V:(0.1418±0.0003)−(3.890±0.023)×10−5(T/K). The Gibbs energy of formation of solid NdFeO3 calculated by the least-squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Nd2O3 from the literature, is given by ΔfG°m(NdFeO3, s)/kJ·mol−1(±2.0)=−1345.9+0.2542(T/K); (1000≤T/K ≤1650). The error in ΔfG°m(NdFeO3, s, T) includes the standard deviation in emf and the uncertainty in the data taken from the literature. Values of ΔfH°m(NdFeO3, s, 298.15 K) and S°m(NdFeO3, s, 298.15 K) calculated by the second law method are −1362.5 (±6) kJ·mol−1 and 123.9 (±2.5) J·K−1·mol−1, respectively. Based on the thermodynamic information, an oxygen potential diagram for the system Nd-Fe-O was developed at 1350 K.  相似文献   

17.
We have successfully synthesized a polycrystalline sample of tetragonal garnet-related Li-ion conductor Li7La3Hf2O12 by solid state reaction. The crystal structure is analyzed by the Rietveld method using neutron powder diffraction data. The structure analysis identifies that tetragonal Li7La3Hf2O12 has the garnet-related type structure with a space group of I41/acd (no. 142). The lattice constants are a=13.106(2) Å and c=12.630(2) Å with a cell ratio of c/a=0.9637. The crystal structure of tetragonal Li7La3Hf2O12 has the garnet-type framework structure composed of dodecahedral La(1)O8, La(2)O8 and octahedral HfO6. Li atoms occupy three types of crystallographic site in the interstices of this framework structure, where Li(1) atom is located at the tetrahedral 8a site, and Li(2) and Li(3) atoms are located at the distorted octahedral 16f and 32g sites, respectively. These Li sites are filled with the Li atom. The present tetragonal Li7La3Hf2O12 sample exhibits bulk Li-ion conductivity of σb=9.85×10−7 S cm−1 and grain-boundary Li-ion conductivity of σgb=4.45×10−7 S cm−1 at 300 K. The activation energy is estimated to be Ea=0.53 eV in the temperature range of 300-580 K.  相似文献   

18.
A natural smectite clay sample from Serra de Maicuru, Pará State, Brazil, had aluminum and zirconium polyoxycations inserted within the interlayer space. The precursor and pillarized smectites were organofunctionalized with the silyating agent 3-mercaptopropyltrimethoxysilane. The basal spacing of 1.47 nm for natural clay increased to 2.58 and 2.63 nm, for pillared aluminum, SAl/SH, and zirconium, SZr/SH, and increases in the surface area from 44 to 583 and 585 m2 g−1, respectively. These chemically immobilized clay samples adsorb divalent copper and cobalt cations from aqueous solutions of pH 5.0 at 298±1 K. The Langmuir, Redlich-Peterson and Toth adsorption isotherm models have been applied to fit the experimental data with a nonlinear approach. From the cation/basic center interactions for each smectite at the solid-liquid interface, by using van’t Hoff methodology, the equilibrium constant and exothermic thermal effects were calculated. By considering the net interactive number of moles for each cation and the equilibrium constant, the enthalpy, ΔintH0 (−9.2±0.2 to −10.2±0.2 kJ mol−1) and negative Gibbs free energy, ΔintG0 (−23.9±0.1 to −28.7±0.1 kJ mol−1) were calculated. These values enabled the positive entropy, ΔintS0 (51.3±0.3 to 55.0±0.3 JK−1 mol−1) determination. The cation-sulfur interactive process is spontaneous in nature, reflecting the favorable enthalpic and entropic results. The kinetics of adsorption demonstrated that the fit is in agreement with a second-order model reaction with rate constant k2, varying from 4.8×10−2 to 15.0×10−2 and 3.9×10−2 to 12.2×10−2 mmol−1 min−1 for copper and cobalt, respectively.  相似文献   

19.
KHCO3 and its deuterated analogue KDCO3 are typical materials that undergo order-disorder phase transitions at 318 and 353 K, respectively. The spin-lattice relaxation times, T1, spin-spin relaxation times, T2, and the number of resonance lines for the 1H, 2D, and 39K nuclei of these crystals were investigated using NMR spectrometer. These materials are known to exhibit anomalous decreases in T1 near TC, which have been attributed to a structural phase transition. Additionally, changes in the symmetry of the (HCO3)22− (or (DCO3)22−) dimers in these materials are associated with large changes in T1, T2, and the number of resonance lines. Here we found that the resonance lines for 1H, 2D, and 39K nuclei decrease in number as the temperature is increased up to TC, indicating that the orientations of the (HCO3)22− (or (DCO3)22−) dimers and the environments of the K ions change at TC. Moreover, based on number of resonance lines, the results further indicate that the (HCO3)22− (or (DCO3)22−) dimers reorientate to approximately parallel to the directions of the hydrogen bonds (or deuteron bonds) and the direction of the a-axis. The transitions at 318 and 345 K of the two crystals are of the order-disorder type. The present results therefore indicate that the orientations of the (HCO3)22− and (DCO3)22− dimers and the environment of the K ion play a significant role in these phase transitions.  相似文献   

20.
Various compositions of solid solutions K3P(Mo1−xWx)12O40 (0?x?1) were prepared using two solid state synthetic routes. The crystallite size was determined by linewidth refinements of X-ray diffraction patterns using the Warren-Averbach method, and the grain size distribution by laser scattering experiments. Optical properties were determined by diffuse reflectance measurements in the UV-visible range. The optical gap Eg was found to increase exponentially from ∼2.5 to ∼3.30 eV with increasing x, and is systematically shifted to a higher energy when the grain size decreases. The relation between Eg and x was analyzed by calculating the HOMO-LUMO gaps of the [P(Mo1−xWx)12O40]3− anions on the basis of tight-binding electronic structure calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号