首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nickel-aluminum layered double hydroxide (Ni-Al LDH) was synthesized by a simple co-precipitation method and used as a solid-phase extraction (SPE) sorbent for separation and pre-concentration of trace levels of salicylic acid (SA) from aqueous solutions. Extraction of analyte is based on the adsorption of salicylate ions on the Ni-Al (NO3) LDH and/or their exchanging with LDH interlayer NO3 ions. The retained analyte on the LDH was stripped by 3 mol L−1 NaOH solution and its concentration was subsequently determined spectrofluorometrically at λem = 400 nm with excitation at λex = 270 nm. Various parameters affecting the extraction efficiency of SA on the Ni-Al (NO3) LDH, such as pH, amount of nano-sorbent, sample loading flow rate, elution conditions, sample volume and matrix effects were investigated. In the optimum experimental conditions, the limit of detection (3 s) and enrichment factor were 0.12 μg L−1 and 40, respectively. The relative standard deviation (RSD) for six replicate determinations of 10 μg L−1 SA was 2.3%. The calibration graph using the pre-concentration system was linear in the range of 0.3-45 μg L−1 with a correlation coefficient of 0.9985. The optimized method was successfully applied to the determination of SA in blood serum, willow leaf and aspirin tablet.  相似文献   

2.
In this work, 1,10-phenanthroline was used as a complexing agent for the separation and preconcentration of Cd(II), Co(II), Ni(II), Cu(II) and Pb(II) on activated carbon. The metals were adsorbed on activated carbon by two methods: static (1) and dynamic (2). The optimal condition for separation and quantitative preconcentration of metal ions with activated carbon for the proposed methods was for (1) in the static methods in the pH range 7-9. The desorption was found quantitative with 8 mol dm−3 HNO3 for Cd(II) (92.6%), Co(II) (95.6%), Pb(II) (91.0%), and with 3 mol dm−3 HNO3 for Cd(II) (95.4%), Pb(II) (100.2%). The preconcentration factor was 100 with R.S.D. values between 1.0 and 2.9%. For (2), the dynamic method (SPE), the pH range for the quantitative sorption was 7-9. The desorption was found quantitative with 8 mol dm−3 HNO3 for Cd(II) (100.6%), Pb(II) (94.4%), and reasonably high recovery for Co(II) (83%), Cu(II) (88%). The optimum flow rate of metal ions solution for quantitative sorption of metals with 1,10-phenanthroline was 1-2 cm3 min−1 whereas for desorption it was 1 cm3 min−1. The preconcentration factor was 50 for all the ions of the metals with R.S.D. values between 2.9 and 9.8%.The samples of the activated carbon with the adsorbed trace metals can be determined by ICP-OES after mineralization by means of a high-pressure microwave mineralizer. The proposed method provides recovery for Cd (100.8%), Co (97.2%), Cu (94.6%), Ni (99.6%) and Pb (100.0%) with R.S.D. values between 1.2 and 3.2%.The preconcentration procedure showed a linear calibration curve within the concentration range 0.1-1.5 μg cm−3. The limits of detection values (defined as “blank + 3s” where s is standard deviation of the blank determination) are 5.8, 70.8, 6.7, 24.6, and 10.8 μg dm−3 for Cd(II), Pb(II), Co(II), Ni(II) and Cu(II), respectively, and corresponding limit of quantification (blank + 10s) values were 13.5, 151.3, 20.0, 58.9 and 33.2 μg dm−3, respectively.As a result, these simple methods were applied for the determination of the above-mentioned metals in reference materials and in samples of plant material.  相似文献   

3.
Gold nanoparticles (Au nps) have been synthesized in aqueous solution of polyvinyl pyrrolidone (PVP) by gamma radiolysis from HAuCl4·3H2O precursor and in presence of small concentrations of Ag+, 2-propanol and acetone. The effect of different experimental parameters, such as concentration of reactant, molecular weight of PVP on nanoparticle formation was studied. TEM image confirmed that spherical Au nps were formed when PVP of molecular weight 360,000 Da was used as capping agent. H2O2 is a reactant in the enzyme catalyzed reaction of o-phenylene diamine (o-PDA). The reaction product has a weak absorption in the yellow region of the spectrum. When this product interacts with Au nps, it leads to enhancement of the absorption peak. The nanoparticles synthesized by radiation method were used for estimation of H2O2. The absorbance value of this peak at λmax was observed to change with H2O2 concentration, which was monitored for estimation of H2O2. The response is linear in the range of 2.5×10−6 mol dm−3 to 2×10−4 mol dm−3 and 1×10−7 mol dm−3 to 3×10−6 mol dm−3 H2O2 in two separate sets of experimental parameters with detection limit 1×10−7 mol dm−3.  相似文献   

4.
A new chelating polymeric sorbent has been developed using Merrifield chloromethylated resin anchored with di-bis (2-ethylhexyl) malonamide (DB2EHM). The modified resin was characterized by CPMAS NMR spectroscopy, FT-NIR-FIR spectroscopy, CHN elemental analysis and also by thermo gravimetric analysis. The fabricated sorbent showed superior binding affinity for U(VI) over Th(IV) and other diverse ions, even under high acidities. Various physio-chemical parameters, like solution acidity, phase exchange kinetics, metal sorption capacity, electrolyte tolerance studies, etc., influencing the resin’s metal extractive behavior were studied by both static and dynamic method. Batch extraction studies performed over a wide range of solution acidity (0.01-10 M) revealed that selective extraction of U(VI) could be achieved even up to 4 M acidity with distribution ratios (D) in the order of ∼103. The phase exchange kinetics studies performed for U(VI) and Th(IV) revealed that time duration of <15 min was sufficient for >99.5% extraction. But similar studies when preformed for trivalent lanthanides gave very low D values (<50), with the extraction time extending up to 60 min. The metal sorption studies performed for U(VI) and Th(IV) at 5 M HNO3 was found to be 62.5 and 38.2 mg g−1,respectively. Extraction efficiency in the presence of inferring electrolyte species and inorganic cations were also examined. Metal ion desorption was effective using 10-15 mL of 1 M (NH4)2CO3 or 0.5 M α-hydroxy isobutyric acid (HIBA). Extraction studies performed on a chromatographic column at 5 M acidity were found to give enrichment factor values of 310 and 250 for U(VI) and Th(IV), respectively. The practical utility of the fabricated chelating sorbent and its efficiency to extract actinides from acidic waste streams was tested using a synthetic nuclear spent fuel solution. The R.S.D. values obtained on triplicate measurements (n = 3) were within 5.2%.  相似文献   

5.
A series of six new Schiff bases has been prepared by reacting aniline and 4-R-substituted anilines (R=CH3, OCH3, Br, Cl, NO2) with 3-hydroxy-4-pyridinecarboxaldehyde. The 1H, 13C, 15N and 17O NMR data of these compounds are used to discuss the tautomerism. 15N NMR and 17O NMR chemical shifts established the tautomer existing in solution as the hydroxy/imino. 13C CPMAS NMR confirms that the same tautomer is found in the solid state. The stabilities of the tautomeric forms have been approached using density functional calculations (B3LYP/6-31G**) in the gas phase. In all cases the neutral hydroxy/imino with E configuration is more stable than the oxo/enamino form (by ∼22 kJ mol−1) and significantly more stable than the betaine (by ∼75 kJ mol−1).  相似文献   

6.
A procedure for the determination of gallium by differential pulse adsorptive stripping voltammetry (DPADSV), using different complexing agents (ammonium pyrrolidine dithiocarbamate (APDC), pyrocatechol violet (PCV) and diethyldithiocarbamate (DDTC)), has been optimized. The selection of the experimental conditions was made using experimental design methodology. Under these conditions, the calibration was made and the detection limit was determined for each gallium-ligand complex. A robust regression method was applied which allowed the elimination of anomalous points. The detection limit, with α=β=0.05, for gallium-APDC complex was 5.0×10−8 mol dm−3, for gallium-PCV complex was 9.9×10−9 mol dm−3, and the lowest detection limit (1.3×10−9 mol dm−3) was obtained with DDTC. For this reason, DDTC was selected for the determination of the gallium concentration in a certificate sample and in a spiked tap water sample. The linear dynamic range for gallium-APDC complex was from 5.0×10−8 to 2.7×10−7 mol dm−3, for gallium-PCV complex was from 5.0×10−9 to 4.8×10−7 mol dm−3, and for gallium-DDTC complex was from 1.0×10−9 to 2.1×10−7 mol dm−3.  相似文献   

7.
The reactions of OH, H and eaq with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 4-chloro-2-methylphenoxyacetic acid (MCPA) were studied by pulse radiolysis. The site of OH-radicals addition to the aromatic ring of 2,4,5-T was found to be—C1: ∼18%, C2/C4/C5: total ∼28% and C3/C6: total ∼41%. The overall rate constants with OH-radicals were k(OH+2,4,5-T)=6.4 (±0.5)×109 mol dm−3 s−1 and k(OH+MCPA)=8.5 (±0.8)×109 mol dm−3 s−1. The radiation induced decomposition of the pesticides, chloride- and product formation (phenolic compounds, aliphatic acids) was studied by gamma radiolysis as a function of dose. A mechanism for acetate formation is discussed. The presence of oxygen during irradiation affected the decomposition rate only indiscernibly, however, chloride elimination, ring fragmentation (formation of aliphatic acids), TOC- and toxicity reduction were strongly enhanced. For complete removal of 500 μmol dm−3 herbicides a dose of ∼4 kGy was required. Using air saturation during irradiation a reduction of 37-40% of the TOC was observable at 5 kGy, detoxification (luminescence inhibition <20%) was achieved with 10 kGy.  相似文献   

8.
Facilitated transport of Am(III) in nitric acid medium using tetra(2-ethyl hexyl) diglycolamide (TEHDGA) in n-dodecane as carrier was studied. It was aimed at finding out the physico-chemical model for the transport of Am(III) using TEHDGA/n-dodecane as carrier under various experimental parameters like feed acidity, carrier concentration, varying strippant, varying membrane pore size, etc. The feed acidity and carrier concentrations were varied from 1 M to 6 M HNO3 and 0.1 M to 0.3 M TEHDGA/n-dodecane, respectively. The transport of Am(III) increased with increase in feed acidity and carrier concentration reaching maximum at 3 M HNO3 and 0.2 M TEHDGA/n-dodecane, respectively. Several stripping agents were tested and 0.1 M HNO3 was found to be the most suitable stripping agent for this system. Almost quantitative transport of Am(III) was observed at about 180 min with feed acidity of 3 M HNO3, 0.1 M HNO3 as strippant and 0.2 M TEHDGA/n-dodecane as carrier. The pore size of the membrane support was varied from 0.20 μm to 5 μm and the permeation coefficient increased with increase in pore size up to 0.45 μm (2.43 × 10−3 cm/s), and then decreased with further increase in pore size. The plot between permeation coefficient vs. (membrane thickness)−1 was linear which showed that the Am(III) transport was membrane diffusion limited. The membrane diffusion coefficient calculated from the graph was found to be 1.27 × 10−6 cm2/s and its theoretical value was 1.22 × 10−6 cm2/s. The stability of the carrier against leaching out of the membrane support as well as the integrity of membrane support was studied over a period of 30 days and was found to be satisfactory within the studied time period.  相似文献   

9.
Chen Y  Su YH  Zheng LM  Xia XH 《Talanta》2010,83(1):145-148
The electrochemistry of a macrocyclic metal complex Fe(notpH3) [notpH6 = 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylene-phosphonic acid)] reveals that the protonation/deprotonation of the non-coordinated P-OH groups in Fe(notpH3) affects its formal potential value (E0′) considerably. Plotting E0′ as function of solution pH gives a straight line with a slope of −585 mV pH−1 in the pH range of 3.4-4.0, which is about ten times larger than the theoretical value of −58 mV pH−1 for a reversible proton-coupled single-electron transfer at 20 °C. A sensitive pH responsive electrochemical switch sensor is thus developed based on Fe(notpH3) which shows an “on/off” switching at pH ∼ 4.0.  相似文献   

10.
A new simple and efficient homogeneous liquid-liquid extraction method for the selective separation and preconcentration of molybdenyl ions was developed. α-Benzoin oxime (ABO) was investigated as a complexing ligand, and perfluorooctanoate ion (PFOA) was applied as a phase-separator agent under strongly acidic conditions. Under the optimal conditions ([ABO] = 2.1 × 10−3 M, [PFOA] = 1.8 × 10−2 M, [HNO3] = 1.7 M, [acetone] = 11.8% (v/v)), 10 μg of molybdenum in 5 ml aqueous phase could be extracted quantitatively into 40 μl of the sedimented phase. The maximum concentration factor was 125-fold. Thiocyanate was applied as a chromogenic reagent for the direct spectrophotometric determination of molybdenum in the sedimented phase. The reproducibility of the proposed method is at the most 2.4%.The influence of the type and concentration of acid solution, the concentration of ABO, the type and volume of the water-miscible organic solvent, the concentration of PFOA, and the effect of different diverse ions on the extraction and determination of molybdenum(VI) were investigated. The proposed method was applied to the extraction and determination of molybdenum(VI) in natural water, Spinach, and Lucerne samples. A satisfactory agreement exists between the results obtained by the proposed method and those reported by GF-AAS.  相似文献   

11.
The electrochemical behaviors of guanosine on the ionic liquid of N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CPE) was studied in this paper and further used for guanosine detection. Guanosine showed an adsorption irreversible oxidation process on the carbon ionic liquid electrode (CILE) with the oxidation peak potential located at 1.12 V (vs. SCE) in a pH 4.5 Britton-Robinson (B-R) buffer solution. Compared with that on the traditional carbon paste electrode, small shift of the oxidation peak potentials appeared but with a great increment of the oxidation peak current on the CILE, which was due to the presence of ionic liquid in the modified electrode adsorbed the guanosine on the surface and promoted the electrochemical response. The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n), and the electrode reaction standard rate constant (ks) were calculated as 0.74, 1.9 and 1.26 × 10−4 s−1, respectively. Under the optimal conditions the oxidation peak current showed a good linear relationship with the guanosine concentration in the range from 1.0 × 10−6 to 1.0 × 10−4 mol/L by cyclic voltammetry with the detection limit of 2.61 × 10−7 mol/L (3σ). The common coexisting substances showed no interferences to the guanosine oxidation. The CILE showed good ability to distinguish the electrochemical response of guanosine and guanine in the mixture solution. The urine samples were further detected by the proposed method with satisfactory results.  相似文献   

12.
A study was performed to assess the performance of aminoacids immobilized on carbon nanotubes (CNTs) for their employment as a sorbent for solid phase extraction systems. An immobilization method is introduced and the aminoacid l-tyrosine was chosen as a case study. A spectrophotometric study revealed the amount of aminoacid immobilizated on CNTs surface, and it turned to be of 3174 μmol of l-tyr g−1. The material was tested for Co retention using a minicolumn inserted in a flow system. At pH 7.0, the amount of Co retained by the column was of 37.58 ± 3.06 μmol Co g−1 of CNTs. A 10% (v/v) HNO3 solution was chosen as eluent. The pH study revealed that Co binding increased at elevated pH values. The calculation of the mol ratio (moles of Co bound at pH 9 to moles of l-tyr) turned to be 3:1. The retention capacity was compared to other bivalent cations and showed the following tendency: Cu2+ > Ni2+ > Zn2+ ? Co2+. The analytical performance was evaluated and an enrichment factor of 180 was obtained when 10 mL of 11.37 μg L−1 Co solution was loaded onto the column at pH 9.0; reaching a limit of detection (LoD) of 50 ng L−1. The proposed system was successfully applied to Co determination in QC-LL2 standard reference material (metals in natural water).  相似文献   

13.
A low pressure microwave assisted vapor phase dissolution procedure for silicon nitride and volatilization of in situ generated SiF4 has been developed using H2SO4, HF and HNO3 for the determination of trace impurities present in silicon nitride. Sample was taken in minimum amount (0.5 mL for 100 mg) of H2SO4 and treated with vapors generated from HF and HNO3 mixture in presence of microwaves in a closed container. An 80 psi pressure with ramp and hold times of 30 min and 60 min respectively, operated twice, resulted in 99.9% volatilization of Si. Matrix free solutions were analyzed for impurities using DRC-ICP-MS. The recoveries of Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Y, Cd, Ba and Pb were between 80 and 100% after volatilization of Si. The blanks were in lower ng g−1 with method detection limits in lower ng g−1 to sub ng g−1 range. The method was applied for the analysis of two silicon nitride samples.  相似文献   

14.
In order to analyze actinide elements in radioactive metal waste, the dissolution and chemical separation conditions were optimized. The surfaces of a type 304 stainless steel plate and of pipe waste sampled from the prototype advanced thermal reactor (Fugen) were dissolved in mixed acid solution (HNO3:HCl:H2O = 1:1:4). The resulting solution was evaporated to dryness and dissolved with 2 mol/dm3 of HNO3 to prepare sample solutions. In order to analyze trivalent actinide elements in the sample solution containing a large amount of Fe(III) (>0.1 g) using TRU resin, the effect of Fe(III) concentration on the recovery of Am(III) and reduction effect of Fe(III) to Fe(II) with ascorbic acid were studied. On the basis of results of this study, chemical separation scheme was constructed and Pu and Am in the sample solutions were separated. Thorium and U in the sample solutions were separated with UTEVA resin. High recoveries for all experimented elements were obtained from the analysis of spiked sample solutions, the effectiveness of the method was confirmed.  相似文献   

15.
The distribution of nitric acid between an aqueous phase of constant or variable ionic strength and a benzene solution of diphosphine dioxide can be explained by the following reactions H+a+ NO3-a+ DiPO0 ? D1PO·HNO30 H+a+ NO3-a+ DiPO·HNO30 ? DiPO·2 HNO30 At constant ionic strength, the stability constants K1″ were determined for the complexes 1,1-DiPO·HNO3 (98 ± 01 (M)-1), 1,4-DiPO·HNO3(44±3 (M)-1) and 1,5-DiPO·HNO3 (51 ± 1 (M)-1). The constants K11″ for the complexes 1,1-DiPO·2 HNO3 and 1,5-DiPO.2 HNO3 are respectively 035±001 (M)-1 and 62 ±0.05 (M)-1 at 25°. With an aqueous phase of variable ionic strength, values of K1'=54±7 (M)-2 for 1,5-D1PO.HNO3 and KII'=65 ± 04 (M)-2 for 1,5-DiPO·2 HN03 were obtained  相似文献   

16.
Ying Gao  Yuanhong Xu  Jing Li 《Talanta》2009,80(2):448-453
CE/Ru(bpy)32+ electrochemiluminescence (ECL) system with the assistance of ionic liquids (ILs) was successfully established for sensitive determination of verticine and verticinone in Bulbus Fritillariae for the first time. Migration behavior of alkaloid largely relies on the hydrogen bonding interactions between alkyl imidazolium cations in ILs and the alkaloids. Running buffer containing 40 mmol/L 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) IL-8 mmol/L phosphate resulted in significant changes in separation selectivity for alkaloids with similar structures. The highest sensitivity of the detection was obtained by maintaining the detection potential at 1.2 V. Under the optimized conditions, relative standard derivations of the ECL intensity and the migration time were 3.27 and 2.84% for verticine and 4.42 and 1.69% for verticinone, respectively. The standard curves were linear between 1 × 10−8 and 1 × 10−6 mol/L for verticine and between 5 × 10−8 and 1 × 10−6 mol/L for verticinone, respectively. Detection limits of 1.25 × 10−10 mol/L for verticine and 1 × 10−10 mol/L for verticinone were obtained (S/N = 3). Developed method was successfully applied to determine the amounts of alkaloids in Bulbus Fritillariae.  相似文献   

17.
The feasibility of using diluted HNO3 solutions under oxygen pressure for decomposition of whole and non-fat milk powders and whey powder samples has been evaluated. Digestion efficiency was evaluated by determining the carbon content in solution (digests) and the determination of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Pb and Zn was performed by inductively coupled plasma optical emission spectrometry and Hg by chemical vapor generation coupled to inductively coupled plasma mass spectrometry. Samples (up to 500 mg) were digested using HNO3 solutions (1 to 14 mol L− 1) and the effect of oxygen pressure was evaluated between 2.5 and 20 bar. It was possible to perform the digestion of 500 mg of milk powder using 2 mol L− 1 HNO3 with oxygen pressure ranging from 7.5 to 20 bar with resultant carbon content in digests lower than 1700 mg L− 1. Using optimized conditions, less than 0.86 mL of concentrated nitric acid (14 mol L− 1) was enough to digest 500 mg of sample. The accuracy was evaluated by determination of metal concentrations in certified reference materials, which presented an agreement better than 95% (Student's t test, P < 0.05) for all the analytes.  相似文献   

18.
The polyamines, octyl-[2-(2-octylamino-ethylamino)-ethyl]-amine (L1) and octyl-{2-[2-(2-octylamino-ethylamino)-ethylamino]-ethyl}-amine (L2), have been used as anion ionophores in PVC-based membrane ion-selective electrodes. Different electrodes were prepared containing L1, or L2, and o-nitrophenyl octyl ether (NPOE) or bis(2-ethylhexyl)sebacate (DOS) as plasticizers. The response of the electrodes was tested in two different buffers, HEPES-KOH (pH 7) and MES-KOH (pH 5.6). Electrodes containing L1 and L2 with NPOE (E1 and E2, respectively) showed a Nernstian response for thiocyanate with a good response time. The detection limit, linear range and slope for electrode E1 were 3.8 × 10−6 mol dm−3, 1 × 10−5 to 1 × 10−1 mol dm−3 and −57.2 mV decade−1 at pH 5.6 and 4.47 × 10−6 mol dm−3, 1.95 × 10−5 to 1 × 10−1 mol dm−3 and −58.1 mV decade−1 at pH 7.0. For electrode E2 the detection limit, linear range and slope found were 2.63 × 10−6 mol dm−3, 7.94 × 10−6 to 1 × 10−1 mol dm−3 and −58.5 mV decade−1 at pH 5.6 and 1.23 × 10−5 mol dm−3, 7.95 × 10−5 to 1 × 10−1 mol dm−3 and −46.0 mV decade−1 at pH 7. In contrast, electrodes containing DOS as plasticizers gave only response at pH 5.6 (detection limit, linear range and slope at pH 5.6 were 3.16 × 10−5 mol dm−3, 1 × 10−4 to 1 × 10−1 mol dm−3 and −52.6 mV decade−1). Selectivity coefficients for different anions with respect to thiocyanate were calculated. The electrode E2 at pH 5.6 was also used for the determination of SCN by potentiometric titrations with Ag+ ions with good results. The electrode E2 was also used to determine concentrations of thiocyanate in biological samples.  相似文献   

19.
An electrochemical DNA detection method for the phosphinothricin acetyltransferase (PAT) gene sequence from the transgenetic plants was established by using a microplate hybridization assay with cadmium sulfide (CdS) nanoparticles as oligonucleotides label. The experiment included the following procedures. Firstly target PAT ssDNA sequences were immobilized on the polystyrene microplate by physical adsorption. Then CdS nanoparticle labeled oligonucleotide probes were added into the microplate and the hybridization reaction with target ssDNA sequences took place in the microplate. After washing the microplate for three times, certain amounts of HNO3 were added into the microplate to dissolve the CdS nanoparticles anchored on the hybrids and a solution containing Cd2+ ion was obtained. At last differential pulse anodic stripping voltammetry (DPASV) was used for the sensitive detection of released Cd2+ ion. Based on this principle a sensitive electrochemical method for the PAT gene sequences detection was established. The voltammetric currents of Cd2+ were in linear range with the target ssDNA concentration from 5.0 × 10− 13 to 1.0 × 10− 10 mol/L and the detection limit was estimated to be 8.9 × 10− 14 mol/L (3σ). The proposed method showed a good promise for the sensitive detection of specific gene sequences with good selectivity for the discrimination of the mismatched sequences.  相似文献   

20.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号