首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel bacteria repellent PVC surfaces were developed. hydroxyethyl cellulose, methylcellulose, dextran and PEG containing alkyne groups were successfully synthesized and characterized. These polymers were grafted on PVC surfaces bearing azide groups (PVC-N3) by the click CuI-catalyzed Huisgen 1,3-dipolar cycloaddition. The grafted surfaces were homogeneous with specific nanostructures, and presented high polarity and hydrophilicity. In these conditions, hydroxyethyl cellulose and methylcellulose surfaces displayed high repellent effect against Escherichia coli.  相似文献   

2.
Based on a water‐in‐oil‐in‐water emulsion system, porous and hollow polydimethylsiloxane (PDMS) beads containing cells using a simple fluidic device with three flow channels are fabricated. Poly(ethylene glycol) (PEG) in the PDMS oil phase is served as a porogen for pore development. The feasibility of the porous PDMS beads prepared with different PEG concentrations (10, 20, and 30 wt%) for cell encapsulation in terms of pore size, protein diffusion, and cell proliferation inside the PDMS beads is evaluated. The PDMS beads prepared with PEG 30 wt% are exhibited a highly porous structure and facilitated fast diffusion of protein from the core domain to the outer phase, eventually leading to enhanced cell proliferation. The results clearly indicate that hollow PDMS beads with a porous structure could provide a favorable microenvironment for cell survival due to the large porous structure.

  相似文献   


3.
Silicon grafted monodisperse poly(ethylene glycol) (PEG) silanes with various PEG chain lengths and mixtures of these were systematically analyzed with static time-of-flight secondary ion mass spectrometry (TOF-SIMS). The mass spectra show differences in the various relative signal intensities, an observation that was used to elucidate important aspects of the grafting process. The relationship between PEG-silane fragment ion abundances and Si(+) ion abundances were used to (i) qualitatively describe layer thicknesses of grafted mixtures of PEG-silanes on silicon, (ii) construct a calibration curve from which PEG chain length (or molecular mass) can be determined and (iii) quantitatively determine surface mixture compositions of grafted monodisperse PEG-silanes of different chain lengths (3, 7 and 11 PEG units). The results suggest that discrimination does take place in the adsorption process. The PEG-silane with the shorter PEG chain is discriminated for mixtures containing PEG3-silane, whereas the PEG-silane with the longer PEG chain is discriminated in PEG7/PEG11-silane mixtures. The origin of this difference in adsorption behavior is not well understood. Aspects of the grafting process and the TOF-SIMS analyses are discussed.  相似文献   

4.
The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol−1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of β-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.  相似文献   

5.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为, 在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响. 根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为, 解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因: (1) 相比PDMS涂层, 蛋白质与PEG涂层的结合能量较低, 使其结合更加疏松; (2) 蛋白质吸附到材料表面要克服表面水化层分子引起的能障, PEG表面与水分子之间结合紧密, 结合水难于脱附, 造成蛋白质在其表面的吸附需要克服更高的能量, 不利于蛋白质的吸附.  相似文献   

6.
Spatial control of cell growth on surfaces can be achieved by the selective deposition of molecules that influence cell adhesion. The fabrication of such substrates often relies upon photolithography and requires complex surface chemistry to anchor adhesive and inhibitory molecules. The production of simple, cost-effective substrates for cell patterning would benefit numerous areas of bioanalytical research including tissue engineering and biosensor development. Poly(dimethylsiloxane) (PDMS) is routinely used as a biomedical implant material and as a substrate for microfluidic device fabrication; however, the low surface energy and hydrophobic nature of PDMS inhibits its bioactivity. We present a method for the surface modification of PDMS to promote localized cell adhesion and proliferation. Thin metal films are deposited onto PDMS through a physical mask in the presence of a gaseous plasma. This treatment generates topographical and chemical modifications of the polymer surface. Removal of the deposited metal exposes roughened PDMS regions enriched with hydrophilic oxygen-containing species. The morphology and chemical composition of the patterned substrates were assessed by optical and atomic force microscopies as well as X-ray photoelectron spectroscopy. We observed a direct correlation between the surface modification of PDMS and the micropatterned adhesion of fibroblast cells. This simple protocol generates inexpensive, single-component substrates capable of directing cell attachment and growth.  相似文献   

7.
以高密度梳状PEG(CPEG)作为表面改性材料, 将PEG末端羟基转化为醛基, 将梳状PEG和线形PEG固定在氨基化的PET膜表面, 并利用表面的反应性醛基进一步固定了氨基酸和整合素配体多肽片段RGD多肽. 红外光谱、 接触角和X射线光电子能谱(XPS)测定结果表明, 该法可有效地固定氨基酸和多肽, 获得模拟细胞膜中多糖-蛋白质复合物结构的特异性功能表面. 对两种不同结构的PEG细胞培养实验结果表明, CPEG比线形PEG(LPEG)具有更好的抗非特异粘附性. 此外, CPEG比LPEG具有更多的活性反应基团, 用PEG末端活性的醛基固定整合素配体多肽片段RGD, 可有效地诱导材料表面的内皮细胞化, 改善材料的细胞相容性.  相似文献   

8.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为,在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响.根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为,解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因:(1)相比PDMS涂层,蛋白质与PEG涂层的结合能量较低,使其结合更加疏松;(2)蛋白质吸附到材料表面要克服表面水化层分子引起的能障,PEG表面与水分子之间结合紧密,结合水难于脱附,造成蛋白质在其表面的吸附需要克服更高的能量,不利于蛋白质的吸附.  相似文献   

9.
Wettability and zeta potential studies were performed to characterize the hydrophobicity and surface charge of PVC blood bag samples and evaluate the effect of these properties on fibroblast cells growth. The surface properties of PVC and plasma treated PVC were compared by water drop contact angle and zeta potential measurement. Light microscopy was used to study the behavior of cell attachment and growth on these surfaces. Water drop contact angle measurement shows that the plasma treated PVC becomes more hydrophilic and wettability increased. Zeta potential and in vitro cell culture measurements noticed that the plasma treated PVC surface is more negatively charge and consequently attachment of the L929 fibroblast cells decreased on this surface.  相似文献   

10.
Controlling zeta potential of PDMS surface coated with a layer of PEG is important for electroosmosis and electrophoresis in PDMS made microfluidic chips. Here, zeta potentials of PDMS surfaces modified by simple physisorption of PEG of different concentrations in phosphate buffer solutions, pure water, and PEG solution were reported. Coating PEG on PDMS surfaces was achieved by immersing a PDMS layer into the PEG solution for 10 min and then taking it out and placing it in an oven at 80℃ for 10 h. To avoid damaging the PEG layer on the PDMS surface, an induction current method was employed for zeta potential measurement. Zeta potentials of PEG modified PDMS in electrolyte solutions were measured. The results show that 2.5% PEG can effectively modify PDMS surface with positive zeta potential value in phosphate buffer solutions, pure water and 10% PEG solution. Further increase in PEG solution beyond 5% for surface modification has no obvious effect on zeta potential change.  相似文献   

11.
Iron oxide nanoparticles (NPs) with a diameter 21.6 nm were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with grafted 5,000 Da poly(ethyelene glycol) (PEG) or short ethylene glycol (EG) tails. The coating procedure utilizes hydrophobic interactions of octadecene and oleic acid tails, while the hydrolysis of maleic anhydride moieties as well as the presence of hydrophilic PEG (EG) tails allows the NP hydrophilicity. The success of the NP coating was found to be independent of the degree of grafting which was varied between 20 and 80% of the -MacOD-units, but depended on the length of the grafted tail. The NP coating and hydrophilization did not occur when the modified copolymer contained 750 Da PEG tails independently of the grafting degree. To explain this phenomenon the micellization of the modified PMAcOD copolymers in water was analyzed by small angle x-ray scattering (SAXS). The PMAcOD molecules with the grafted 750 Da PEG tails form compact non-interacting disk-like micelles, whose stability apparently allows for no interactions with the NP hydrophobic shells. The PMAcOD containing the 5,000 Da PEG and EG tails form much larger aggregates capable of an efficient coating of the NPs. The coated NPs were characterized using transmission electron microscopy, dynamic light scattering, ζ-potential measurements, and thermal gravimetry analysis. The latter method demonstrated that the presence of long PEG tails in modified PMAcOD allows the attachment of fewer macromolecules (by a factor of ~20) compared to the case of non-modified or EG modified PMAcOD, emphasizing the importance of PEG tails in NP hydrophilization. The NPs coated with PMAcOD modified with 60% (towards all -MAcOD- units) of the 5,000 PEG tails bear a significant negative charge and display good stability in buffers. Such NPs can be useful as magnetic cores for virus-like particle formation.  相似文献   

12.
Plasma-induced grafting of polydimethylsiloxane (PDMS) onto the surface of polyurethane (PU) film. The virgin, plasma treated, and PDMS grafted PU films were characterized by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, water drop contact angle measurements, and scanning electron microscopy (SEM). The ATR-FTIR spectrogram of the grafted film showed the new characteristic peaks of PDMS. These grafted surfaces exhibited higher hydrophobicity and homogenous morphology. In vitro cell culture study showed that modified surfaces as well as virgin film were compatible with fibroblast cells. The formation of graft polymers combines the biostability of silicone with excellent physical and mechanical properties of PU.  相似文献   

13.
The surface of poly(dimethylsiloxane) (PDMS) is grafted with poly(acrylic acid) (PAA) layers via surface‐initiated photopolymerization to suppress the capsular contracture resulting from a foreign body reaction. Owing to the nature of photo‐induced polymerization, various PAA micropatterns can be fabricated using photolithography. Hole and stripe micropatterns ≈100‐µm wide and 3‐µm thick are grafted onto the PDMS surface without delamination. The incorporation of PAA micropatterns provides not only chemical cues by hydrophilic PAA microdomains but also topographical cues by hole or stripe micropatterns. In vitro studies reveal that a PAA‐grafted PDMS surface has a lower proliferation of both macrophages (Raw 264.7) and fibroblasts (NIH 3T3) regardless of the pattern presence. However, PDMS with PAA micropatterns, especially stripe micropatterns, minimizes the aggregation of fibroblasts and their subsequent differentiation into myofibroblasts. An in vivo study also shows that PDMS samples with stripe micropatterns polarized macrophages into anti‐inflammatory M2 macrophages and most effectively inhibits capsular contracture, which is demonstrated by investigation of inflammation score, transforming‐growth‐factor‐β expression, number of macrophages, and myofibroblasts as well as the collagen density and capsule thickness.  相似文献   

14.
The surface of polydimethylsiloxane (PDMS) was modified using a CO2-pulsed laser to evaluate the changes in physical and biological properties of the treated surface. Attachment of anchorage dependent cells, namely baby hamster kidney (BHK) fibroblastic cells, on PDMS surface was investigated in stationary culture conditions. BHK cell adhesion and growth on the PDMS surfaces were studied using scanning electron microscopy (SEM) and optical microscopy. To evaluate the surface wettability, water drop contact angles were determined. The laser treated PDMS surfaces showed high hydrophobicity and low cell adhesion, no spreading and growth in comparison with the unmodified PDMS. It was found that both the wettability and surface structure of the PDMS surface control cell attachment and growth.  相似文献   

15.
A highly self‐plasticized poly(vinyl chloride) (PVC) is demonstrated for the first time via click grafting of hyperbranched polyglycerol (HPG). The plasticizing effect of the grafted HPG on PVC is systematically investigated by various analytical methods. The amorphous and bulky dendritic structure of HPG efficiently increases the free volume of the grafted PVC, which leads to a remarkably lower glass transition temperature comparable to that of the conventional plasticized PVC. Viscoelastic analysis reveals that HPG considerably improves the softness of the grafted PVC at room temperature and promotes the segmental motion in the system. The HPG‐grafted PVC films exhibit an exceptional stretchability unlike the mixture of PVC and HPG because the covalent attachment of HPG to PVC allows it to maintain its homogeneous and well‐organized architecture under tensile stretching. The work provides valuable insights into the design of highly flexible and stretchable polymeric materials by means of introducing hyperbranched side chains.

  相似文献   


16.
聚氯乙烯表面共价键合肝素及抗凝血性的研究   总被引:8,自引:0,他引:8  
采用Ar等离子体引发聚乙二醇(PEG)在聚氯乙烯(PVC)表面固定化,进一步对固定PEG后的PVC进行肝素化处理,以改善PVC材料的抗凝血性能。探讨了PEG浓度对Ar等离子体固定化反应效果的影响。通过X射线光电子能谱(XPS)、衰减全反射红外光谱(ATR-FTIR)、扫描电镜(SEM)和接触角测定研究了固定PEG前后PVC的表面性能和表面形貌的变化。XPS分析证实肝素已成功地共价键合于PVC表面。采用体外凝血时间测定和血小板粘附实验对材料的抗凝血性能进行评价,结果表明,被修饰PVC材料的抗凝血性能显著提高。  相似文献   

17.
Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane)   总被引:1,自引:0,他引:1  
This paper describes the influence of the composition of poly(dimethylsiloxane) (PDMS) on the attachment and growth of several different types of mammalian cells: primary human umbilical artery endothelial cells (HUAECs), transformed 3T3 fibroblasts (3T3s), transformed osteoblast-like MC3T3-E1 cells, and HeLa (transformed epithelial) cells. Cells grew on PDMS having different ratios of base to curing agent: 10:1 (normal PDMS, PDMSN), 10:3 (PDMSCA), and 10:0.5 (PDMSB). They were also grown on "extracted PDMS" (normal PDMS that has reduced quantities of low molecular-weight oligomers, PDMSN,EX) and normal PDMS that had been extracted and then oxidized (PDMSN,EX,OX); all surfaces were exposed to a solution of fibronectin prior to cell attachment. Generally, fibronectin-coated PDMS is a suitable substrate for culturing mammalian cells. Compatibility of cells on some surfaces, however, was dependent on the cell type: PDMSN,EX,OX caused cell detachment of 3T3 fibroblasts and MC3T3-E1 cells, and PDMSCA caused detachment of HUAECs and HeLa cells. Growth of cells on PDMSN, PDMSN,EX, and PDMSB was comparable to growth on tissue culture-treated polystyrene for most of the cell types. All cells grew at similar rates on PDMS substrates regardless of the stiffness of the substrate, for substrates having Young's moduli ranging from E=0.60 +/- 0.04 to 2.6 +/- 0.2 MPa (for PDMSB and PDMSN,EX, respectively).  相似文献   

18.
Binary blends based on poly(vinyl chloride) (PVC) were prepared both by casting from tetrahydrofuran (THF) and by mixing in the melt form, in a discontinuous mixer, PVC and multi-block copolymers containing poly(ϵ-caprolactone) (PCDT) and poly(ethylene glycol) (PEG) segments. PCDT-PEG copolymers were synthesized using a polycondensation reaction where the α,ω-bis-chloroformate of an oligomeric poly(ϵ-caprolactone) diol terminated (PCDT) and oligomeric PEG were employed as macromonomers. For comparison purposes, blends PVC with starting oligomers as well as with mixtures containing a typical low molecular plasticizer, dioctylphthalate (DOP), were also prepared. The copolymer miscibility was studied by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The blend morphology was investigated by polarized light microscopy (PLM). A higher miscibility with PVC was observed for copolymers compared to PEG.  相似文献   

19.
Poly(N-isopropyl acrylamide) (PNIPAAm) was grafted on a polysulfone UF membrane. The changes of permeability as well as retention of PEG (35 kg/mol) and Dextran (500 kg/mol) between 23 and 60 °C were determined for both grafted and unmodified membranes. The results showed that the viscosity corrected water permeability and solute retention were almost constant for the unmodified membranes within the measured temperature range, the permeability of the grafted membranes increased and the retention of Dextran and PEG decreased with temperature. The variation of changes was most obvious in the temperature range 27–37 °C for the modified membranes due to the lower critical solution temperature (LCST) of PNIPAAm. The location and profile of PNIPAAm inside and on the surface of the membrane were analysed by SEM and FTIR. Depth profile calculation for FTIR spectra showed that PNIPAAm was mostly placed inside the membrane (at a depth of 1.06–1.10 μm from the surface) rather than on the surface. The amount of grafted PNIPAAm was low and did not significantly affect the morphology of the membrane. Therefore, a difference in SEM pictures of modified and unmodified membranes could not be seen. The modified membrane exhibited a clearly different thermal response compared to the unmodified one.  相似文献   

20.
Polydimethylsiloxane (PDMS)‐grafted nanoparticles and PDMS were added, respectively, to inhibit the dewetting of polymer films and the formation of surface patterns in spin coating. Uniform and flat films were successfully achieved with the addition of PDMS‐grafted silica nanoparticles or PDMS. Time‐of‐flight secondary ion mass spectrometry depth profiling indicated that PDMS‐grafted silica nanoparticles and PDMS preferentially segregated to the surface. A high concentration of bromine end groups was observed at the interface. The surface layer of PDMS or PDMS‐grafted silica nanoparticles can decrease the surface tension of the polymer solutions and reduce the evaporation rates of the solvents, providing more time for the bromine end groups to anchor themselves at the silicon substrates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号