首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The development of carbohydrate-based therapeutics has been frustrated by the low affinities that characterize protein-carbohydrate complexation. Because of the oligomeric nature of most lectins, the use of multivalency may offer a successful strategy for the creation of high-affinity ligands. The solid-phase evaluation of libraries of peptide-linked multivalent ligands facilitates rapid examination of a large fraction of linker structure space. If such solid-phase assays are to replicate solution binding behavior, the potential for intermolecular bivalent binding on bead surfaces must be eliminated. Here we report the solid-phase synthesis and analysis of peptide-linked, spatially segregated mono- and bivalent ligands for the legume lectin concanavalin A. Bead shaving protocols were used for the creation of beads displaying spatially segregated binding sequences on the surface of Tentagel resins. The same ligands were also synthesized on PEGA resin to determine the effect of ligand presentation on solid-phase binding. While we set out to determine the lower limit of assay sensitivity, the unexpected observation that intermolecular bivalent ligand binding is enhanced for bivalent ligands relative to monovalent ligands allowed direct observation of the level of surface blocking required to prevent intermolecular bivalent ligand binding. For a protein with binding sites separated by 65 A, approximately 99.9% of Tentagel(1) surface sites and 99.99% of the total sites on a PEGA bead must be blocked to prevent intermolecular bivalent binding. We also report agglutination and calorimetric solution-phase binding studies of mono- and bivalent peptide-linked ligands.  相似文献   

2.
A series of bivalent ligands of varying length were synthesized to inhibit the receptor-binding process of cholera toxin. Competitive surface receptor binding assays showed that significant potency gains relative to the constituent monovalent ligands were achieved independently from the ability of the extended bivalent ligands to span binding sites within the toxin pentamer. Several models that could account for the unexpected improvement in IC(50) values are examined, taking into account crystallographic analysis of each ligand in complex with the toxin pentamer. Evidence is presented that steric blocking at the receptor binding surface may play a role. The results of our study suggest that the use of relatively short, "nonspanning" bivalent ligands, or monovalent ligands of similar topology and bulk may be an effective way of blocking the interaction of multimeric proteins with their cell surface receptors.  相似文献   

3.
This paper describes a synthetic dimer of carbonic anhydrase, and a series of bivalent sulfonamide ligands with different lengths (25 to 69 ? between the ends of the fully extended ligands), as a model system to use in examining the binding of bivalent antibodies to antigens. Assays based on analytical ultracentrifugation and fluorescence binding indicate that this system forms cyclic, noncovalent complexes with a stoichiometry of one bivalent ligand to one dimer. This dimer binds the series of bivalent ligands with low picomolar avidities (K(d)(avidity) = 3-40 pM). A structurally analogous monovalent ligand binds to one active site of the dimer with K(d)(mono) = 16 nM. The bivalent association is thus significantly stronger (K(d)(mono)/K(d)(avidity) ranging from ~500 to 5000 unitless) than the monovalent association. We infer from these results, and by comparison of these results to previous studies, that bivalency in antibodies can lead to associations much tighter than monovalent associations (although the observed bivalent association is much weaker than predicted from the simplest level of theory: predicted K(d)(avidity) of ~0.002 pM and K(d)(mono)/K(d)(avidity) ~ 8 × 10(6) unitless).  相似文献   

4.
Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds. Rather than mimicking langerin's homotrimeric structure with a C3-symmetric scaffold, we developed readily accessible, easy-to-design bivalent binders. The method considers the requirements for bridging sugar binding sites and statistical rebinding as a means to both strengthen the interactions at single binding sites and amplify the avidity enhancement provided by chelation. This gave a 1150-fold net improvement over the affinity of the free ligand and provided a nanomolar binder (IC50=300 nM) for specific internalization by langerin-expressing cells.  相似文献   

5.
A hybrid functional biomolecular interface designed at a molecular size level is very effective at capturing an analyte with high sensitivity even if the interaction is very weak, as when detecting proteins with carbohydrate. We designed and processed a protein (lectin) recognition molecular interface taking the following points into consideration: (1) the height (molecular length) difference between the capturing and spacer molecules; (2) the ratio of capturing molecules in the recognition interface. When the height difference between the maltoside part (Concanavalin A (Con A) recognition group) and the OH group terminated spacer molecules exceeded (>(CH(2))(6)), the association rate constant (k(a)) became larger (k(a)(1/Ms): ~2.6 times) and the dissociation constant (K(D)) became much smaller (K(D)(M): 1.0 × 10(-6): ~0.17 times) compared with the similar heights (lengths) of both molecular interfaces. With regard to maltoside density, a 100% maltoside monolayer was unsuitable for detecting Con A. We constructed a nanostructured recognition site with a maltoside part of 10%, which was the most suitable ratio for Con A detection. The binding interaction between Con A and the maltoside group was changed from monovalent binding to bivalent binding when the maltoside part was diluted in the recognition interface. From electrochemical measurements, even though there was a small amount of maltoside component on the suitable recognition monolayer, quality similar to that of 100% maltoside was observed.  相似文献   

6.
Microarray technology is increasingly used for a miniaturised and parallel measurement of binding constants. In microarray experiments heterogeneous functionalization of surfaces with capture molecules is a problem commonly encountered. For multivalent ligands, especially, however, binding is strongly affected by receptor density. Here we show that high-resolution imaging of microarrays followed by image segmentation and separate analysis of bright and dark parts provides valuable information about ligand binding. Binding titrations were conducted with monovalent and bivalent fluorescent ligand peptides for the model receptor vancomycin. Microarrays were scanned with a confocal microscope and inhomogeneous spots were evaluated either as a whole or after segmentation into bright and dark areas. Whereas the binding constant for the monovalent ligand was hardly affected by spot heterogeneity, for the bivalent ligand affinity was higher for the parts of the spots with a greater density of receptors. This information was lost if the spots were analysed as a whole. These results reveal that imaging resolution may be a key factor in miniaturised binding assays, emphasising the importance of high-resolution images and image segmentation for new techniques, for example SPR imaging.  相似文献   

7.
设计合成融合表达标签谷胱甘肽S-转移酶(GST)的二价亲和标记试剂,用于功能化磁珠后位点选择性固定化标签GST,为磁分离筛选配体混合物库提供固定化融合靶蛋白的候选方案。 为减少疏水配体在标签GST活性位点的结合,需同时占据标签GST双活性中心内疏水结合位点并发生共价修饰的二价亲和标记试剂。以双苯环为疏水定位基、溴乙酰基为巯基修饰基团、羧基为连接官能团得单价标记试剂,以二乙基三胺为连接臂将单价标记试剂与连接臂两端伯胺连接得标签GST的对称二价亲和标记试剂,再以线性三胺连接臂中间的氨基与羧基磁珠偶联得功能化磁珠。 表征目标化合物对标签GST的标记动力学、结合比;功能化磁珠对标签GST的不可逆固定化动力学和固载容量,及将磁珠表面二价亲和标记试剂转变成还原型谷胱甘肽(GSH)加合物后对标签GST可逆固定化的效果;以碱性磷酸酶及疏水荧光配体为模型考察磁珠固定化标签GST后的非特异结合。 目标化合物对标签GST半抑制浓度为(22±0.2) μmol/L,其与GSH的饱和加合物半抑制浓度为(0.41±0.06) μmol/L,二者与标签GST二聚体结合比接近1:1。 功能化磁珠对标签GST不可逆及可逆固定化的容量均接近25 mg/g磁珠。 偶联GST的磁珠对蛋白非特异吸附很弱,再进一步用单价亲和标记试剂和GSH加合物封闭固定化标签GST剩余的活性位点后对疏水小分子也无显著结合。 结果表明,所设计二价亲和标记试剂功能化磁珠适合用于标签GST及其融合表达蛋白的位点选择性固定化。  相似文献   

8.
Estrogen receptors are known drug targets that have been linked to several kinds of cancer. The structure of the estrogen receptor ligand binding domain is available and reveals a homodimeric layout. In order to improve the binding affinity of known estrogen receptor inhibitors, bivalent compounds have been developed that consist of two individual ligands linked by flexible tethers serving as spacers. So far, binding affinities of the bivalent compounds do not surpass their monovalent counterparts. In this article, we focus our attention on the molecular spacers that are used to connect the individual ligands to form bivalent compounds, and describe their thermodynamic contribution during the ligand binding process. We use computational methods to predict structural and entropic parameters of different spacer structures. We find that flexible spacers introduce a number of effects that may interfere with ligand binding and possibly can be connected to the low binding affinities that have been reported in binding assays. Based on these findings, we try to provide guidelines for the design of novel molecular spacers.  相似文献   

9.
A series of monovalent and bivalent glycopeptides displaying a C-linked analogue of the Pk trisaccharide, the in vivo ligand for the pentavalent Shiga-like toxin binding subunit (SLT-1B), were prepared and evaluated as ligands for SLT-1B by isothermal titration microcalorimetry and competitive enzyme-linked immunosorbent assay (ELISA). Although none of the monovalent ligands showed any enhancement in affinity compared to O-methyl glycoside, two bivalent ligands show significant enhancements in affinity in assays. This observation represents the first calorimetric observation of an enhancement in affinity for this system. In contrast, only one of the two ligands shows an enhancement in the competitive ELISA. Together, these data signal a difference in the means by which the two ligands achieve affinity, apparently triggered by a change in the nature of the linker domain. These results provide a rationalization for apparently contradictory reports from the recent literature and again emphasize the importance of investigating complex binding phenomena by multiple techniques.  相似文献   

10.
Coating of azobenzene chromophore with multivalent sugar ligands has been accomplished. Such sugar coating allows the study of the isomerization properties of this chromophore in aqueous solutions. The predominantly cis-isomer-containing photostationary state (PS) mixture of these azobenzene derivatives is found to be stable for hours. The rate constants for their isomerization, as well as the Arrhenius activation energies, are determined experimentally. An assessment of the lectin binding properties of the lactoside bearing isomeric azobenzene derivatives, by isothermal calorimetric methods, reveals the existence of an unusual cooperativity in their binding to lectin peanut agglutinin. Thermodynamic parameters evaluated for the trans and the PS mixture are discussed, in detail, for the lactoside bearing bivalent azobenzene derivative.  相似文献   

11.
Carbohydrate-binding proteins are generally characterized by poor affinities for their natural glycan ligands, predominantly due to the shallow and solvent-exposed binding sites. To overcome this drawback, nature has exploited multivalency to strengthen the binding by establishing multiple interactions simultaneously. The development of oligovalent structures frequently proved to be successful, not only for proteins with multiple binding sites, but also for proteins that possess a single recognition domain. Herein we present the syntheses of a number of oligovalent ligands for Siglec-8, a monomeric I-type lectin found on eosinophils and mast cells, alongside the thermodynamic characterization of their binding. While the enthalpic contribution of each binding epitope was within a narrow range to that of the monomeric ligand, the entropy penalty increased steadily with growing valency. Additionally, we observed a successful agonistic binding of the tetra- and hexavalent and, to an even larger extent, multivalent ligands to Siglec-8 on immune cells and modulation of immune cell activation. Thus, triggering a biological effect is not restricted to multivalent ligands but could be induced by low oligovalent ligands as well, whereas a monovalent ligand, despite binding with similar affinity, showed an antagonistic effect.  相似文献   

12.
Multivalent ligand–protein interactions are a key concept in biology mediating, for example, signalling and adhesion. Multivalent ligands often have tremendously increased binding affinities. However, they also can cause crosslinking of receptor molecules leading to precipitation of ligand–receptor complexes. Plaque formation due to precipitation is a known characteristic of numerous fatal diseases limiting a potential medical application of multivalent ligands with a precipitating binding mode. Here, we present a new design of high-potency multivalent ligands featuring an inline arrangement of ligand epitopes with exceptionally high binding affinities in the low nanomolar range. At the same time, we show with a multi-methodological approach that precipitation of the receptor is prevented. We distinguish distinct binding modes of the ligands, in particular we elucidate a unique chelating binding mode, where four receptor binding sites are simultaneously bridged by one multivalent ligand molecule. The new design concept of inline multivalent ligands, which we established for the well-investigated model lectin wheat germ agglutinin, has great potential for the development of high-potency multivalent inhibitors as future therapeutics.

Integration of sugar epitopes into a backbone structure generates multivalent lectin ligands with a defined binding mode and high affinity without precipitating the protein.  相似文献   

13.
Cholesterol analogs containing sugar residues linked by spacer groups to the cholesterol O can be incorporated into egg yolk lecithin small unilamellar liposomes. The synthetic glycolipid analogs distribute evenly on both sides of the bilayer. These liposomes are aggregated by the appropriate lectin. For example, when the sugar residue is a beta-galactoside the liposomes are aggregated by ricin and when it is an alpha-mannoside they are aggregated by Con A. The lectin-mediated aggregation of these liposomes is reversed by the addition of the appropriate sugar. The rates but not the extents of aggregation of these liposomes are highly sensitive to the amount of glycolipid incorporated. Below approximately 5% glycolipid incorporation the rate of the lectin-mediated aggregation of these liposomes is exceedingly slow, whereas above this level rapid aggregation proceeds. At all concentrations studied the synthetic glycolipids are incorporated in a unimodal fashion so that the observed threshold effects cannot be based on possible differences in the manner in which the glycolipids are incorporated at different concentrations. This conclusion is based on 1) studies with galactose oxidase that show that the percentage of galactose oxidation in a liposome prepared from a galactosyl-containing glycolipid is independent of glycolipid concentration, and 2) studies on the aggregation of liposomes containing mixed glycolipids in which the glycolipids are shown to behave independently. The importance of a critical density of membrane-bound receptors in order for aggregation to occur is discussed.  相似文献   

14.
A series of β-cyclodextrin (βCD)-scaffolded glycoclusters exposing heterogeneous yet perfectly controlled displays of α-mannosyl (α-Man) and β-lactosyl (β-Lact) antennas were synthesized to probe the mutual influence of varying densities of the saccharide motifs in the binding properties toward different plant lectins. Enzyme-linked lectin assay (ELLA) data indicated that the presence of β-Lact residues reinforced binding of α-Man to the mannose-specific lectin concanavalin A (Con A) even though homogeneous β-Lact clusters are not recognized at all by this lectin, supporting the existence of synergic recognition mechanisms (heterocluster effect). Conversely, the presence of α-Man motifs in the heteroglycoclusters also resulted in a binding-enhancing effect of β-Lact toward peanut agglutinin (PNA), a lectin strongly binding multivalent lactosides but having no detectable affinity for α-mannopyranosides, for certain architectural arrangements. Two-site, sandwich-type ELLA data corroborated the higher lectin clustering efficiency of heterogeneous glycoclusters compared with homogeneous displays of the putative sugar ligand with identical valency. A turbidity assay was also consistent with the previous observations. Most revealingly, the lectin cross-linking ability of heterogeneous glycoclusters was sensitive to the presence of high concentrations of the non-ligand sugar, strongly suggesting that "mismatching" saccharide motifs may modulate carbohydrate-lectin specific recognition in a lectin-dependent manner when present in highly dense displays together with the "matching" ligand, a situation frequently encountered in biological systems.  相似文献   

15.
Small glycodendrimers with α‐mannosyl ligands were synthesized by using copper‐catalyzed azide–alkyne coupling chemistry and some of these molecules were used as multivalent ligands to study the induction of concanavalin A (Con A) precipitation. The results showed that the monovalent mannose ligand could induce the precipitation of Con A. This unexpected finding initiated a series of studies to characterize the molecular basis of the ligand–lectin interaction. The atypical precipitation is found to be specific to the mannose, fluorescein moiety (FITC), and Con A. Apparently the mannose ligand binds to Con A through hydrogen‐bonding interactions, whereas the binding of FITC is mediated by hydrophobic forces.  相似文献   

16.
Multivalent protein-carbohydrate interactions are involved in the initial stages of many fundamental biological and pathological processes through lectin-carbohydrate binding. The design of high affinity ligands is therefore necessary to study, inhibit and control the processes governed through carbohydrate recognition by their lectin receptors. Carbohydrate-functionalised gold nanoclusters (glyconanoparticles, GNPs) show promising potential as multivalent tools for studies in fundamental glycobiology research as well as biomedical applications. Here we present the synthesis and characterisation of galactose functionalised GNPs and their effectiveness as binding partners for PA-IL lectin from Pseudomonas aeruginosa. Interactions were evaluated by hemagglutination inhibition (HIA), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays. Results show that the gold nanoparticle platform displays a significant cluster glycoside effect for presenting carbohydrate ligands with almost a 3000-fold increase in binding compared with a monovalent reference probe in free solution. The most effective GNP exhibited a dissociation constant (K(d)) of 50 nM per monosaccharide, the most effective ligand of PA-IL measured to date; another demonstration of the potential of glyco-nanotechnology towards multivalent tools and potent anti-adhesives for the prevention of pathogen invasion. The influence of ligand presentation density on their recognition by protein receptors is also demonstrated.  相似文献   

17.
The structure-based design of multivalent ligands offers an attractive strategy toward high affinity protein inhibitors. The spatial arrangement of the receptor-binding sites of cholera toxin, the causative agent of the severe diarrheal disease cholera and a member of the AB(5) bacterial toxin family, provides the opportunity of designing branched multivalent ligands with 5-fold symmetry. Our modular synthesis enabled the construction of a family of complex ligands with five flexible arms each ending with a bivalent ligand. The largest of these ligands has a molecular weight of 10.6 kDa. These ligands are capable of simultaneously binding to two toxin B pentamer molecules with high affinity, thus blocking the receptor-binding process of cholera toxin. A more than million-fold improvement over the monovalent ligand in inhibitory power was achieved with the best branched decavalent ligand. This is better than the improvement observed earlier for the corresponding nonbranched pentavalent ligand. Dynamic light scattering studies demonstrate the formation of concentration-dependent unique 1:1 and 1:2 ligand/toxin complexes in solution with no sign of nonspecific aggregation. This is in complete agreement with a crystal structure of the branched multivalent ligand/toxin B pentamer complex solved at 1.45 A resolution that shows the specific 1:2 ligand/toxin complex formation in the solid state. These results reiterate the power of the structure-based design of multivalent protein ligands as a general strategy for achieving high affinity and potent inhibition.  相似文献   

18.
Summary.  Thiourea-bridged glycoclusters and glycodendrimers are described in the literature as mimetics of (oligoantennary) oligosaccharides to serve as high-affinity lectin ligands. In extension of this concept, the assembly of different, structurally varied isothiocyanato-functionalized sugar derivatives on an oligoamine scaffold would lead to novel mixed glycoclusters. To control this approach, the relative reactivities of the isothiocyanates used in the thiourea-bridging reaction have to be known. Therefore, competition experiments with six different sugar isothiocyanates were carried out using 1,8-diamino-3,6-dioxaoctane as a symmetrical difunctionalized core molecule. Reactivities were ranked on the basis of integration ratios in the 1H NMR spectra. A first mixed thiourea-bridged glycocluster was successfully prepared. Received June 13, 2001. Accepted October 31, 2001  相似文献   

19.
Multivalent protein‐carbohydrate interactions are involved in the initial stages of many fundamental biological and pathological processes through lectin–carbohydrate binding. The design of high affinity ligands is therefore necessary to study, inhibit and control the processes governed through carbohydrate recognition by their lectin receptors. Carbohydrate‐functionalised gold nanoclusters (glyconanoparticles, GNPs) show promising potential as multivalent tools for studies in fundamental glycobiology research as well as biomedical applications. Here we present the synthesis and characterisation of galactose functionalised GNPs and their effectiveness as binding partners for PA‐IL lectin from Pseudomonas aeruginosa. Interactions were evaluated by hemagglutination inhibition (HIA), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays. Results show that the gold nanoparticle platform displays a significant cluster glycoside effect for presenting carbohydrate ligands with almost a 3000‐fold increase in binding compared with a monovalent reference probe in free solution. The most effective GNP exhibited a dissociation constant (Kd) of 50 nM per monosaccharide, the most effective ligand of PA‐IL measured to date; another demonstration of the potential of glyco‐nanotechnology towards multivalent tools and potent anti‐adhesives for the prevention of pathogen invasion. The influence of ligand presentation density on their recognition by protein receptors is also demonstrated.  相似文献   

20.
The specific interactions between sugar-binding proteins (lectins) and their complementary carbohydrates mediate several complex biological functions. There is a great deal of interest in uncovering the molecular basis of these interactions. In this study, we demonstrate the use of an efficient one-step amination reaction strategy to fabricate carbohydrate arrays based on mixed self-assembled monolayers. These allow specific lectin carbohydrate interactions to be interrogated at the single molecule level via AFM. The force required to directly rupture the multivalent bonds between Concanavalin A (Con A) and mannose were subsequently determined by chemical force microscopy. The mixed self-assembled monolayer provides a versatile platform with active groups to attach a 1-amino-1-deoxy sugar or a protein (Con A) while minimizing non-specific adhesion enabling quick and reliable detection of rupture forces. By altering the pH of the environment, the aggregation state of Con A was regulated, resulting in different dominant rupture forces, corresponding to di-, tri- and multiple unbinding events. We estimate the value of the rupture force for a single Con A-mannose bond to be 95 ± 10 pN. The rupture force is consistent even when the positions of the binding molecules are switched. We show that this synthesis strategy in conjunction with a mixed SAM allows determination of single molecules bond with high specificity, and may be used to investigate lectin carbohydrate interactions in the form of carbohydrate arrays as well as lectin arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号