首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
The percentage of low response and adaptive resistance to current antibody-based immune checkpoint blockade (ICB) therapy requires the development of novel immunotherapy strategies. Here, we developed an aptamer-assisted immune checkpoint blockade (Ap-ICB) against sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15), a novel immune suppressor broadly upregulated on cancer cells and tumor infiltrating myeloid cells, which is mutually exclusive of programmed cell death ligand 1 (PD-L1). Using protein aptamer selection, we identified WXY3 aptamer with high affinity against Siglec-15 protein/Siglec-15 positive cells. We demonstrated that WXY3 aptamer rescued antigen-specific T cell responses in vitro and in vivo. Importantly, the WXY3 Ap-ICB against Siglec-15 amplified anti-tumor immunity in the tumor microenvironment and inhibited tumor growth/metastasis in syngeneic mouse model, which may result from enhanced macrophage and T cell functionality. In addition, by using aptamer-based spherical nucleic acids, we developed a synergetic ICB strategy of multivalent binding and steric hindrance, which further improves the in vivo anti-tumor effect. Taken together, our results support Ap-ICB targeted Siglec-15 as a potential strategy for normalization cancer immunotherapy.  相似文献   

2.
A quantitative model is proposed for the analysis of the thermodynamic parameters of multivalent interactions in dilute solutions or with immobilized multimeric receptor. The model takes into account all bound species and describes multivalent binding via two microscopic binding energies corresponding to inter- and intramolecular interactions (Delta G(o)inter and Delta G(o)intra), the relative contributions of which depend on the distribution of complexes with different numbers of occupied binding sites. The third component of the overall free energy, which we call the "avidity entropy" term, is a function of the degeneracy of bound states, Omega(i), which is calculated on the basis of the topology of interaction and the distribution of all bound species. This term grows rapidly with the number of receptor sites and ligand multivalency, it always favors binding, and explains why multivalency can overcome the loss of conformational entropy when ligands displayed at the ends of long tethers are bound. The microscopic parameters and may be determined from the observed binding energies for a set of oligovalent ligands by nonlinear fitting with the theoretical model. Here binding data obtained from two series of oligovalent carbohydrate inhibitors for Shiga-like toxins were used to verify the theory. The decavalent and octavalent inhibitors exhibit subnanomolar activity and are the most active soluble inhibitors yet seen that block Shiga-like toxin binding to its native receptor. The theory developed here in conjunction with our protocol for the optimization of tether length provides a predictive approach to design and maximize the avidity of multivalent ligands.  相似文献   

3.
We investigated two recently synthesized and characterized sialyl derivatives, bearing the Neu5Ac-α-(2-6)-Gal epitope, as promising binders for Siglec-7, an inhibitory Siglec mainly found on natural killer cells. A variety of sialoglycan structures can be recognized by Siglec-7 with implications in the modulation of immune responses. Notably, overexpression of sialylated glycans recognized by Siglec-7 can be associated with the progression of several tumors, including melanoma and renal cell carcinoma. NOE-based NMR techniques, including Saturation Transfer Difference and transferred-NOESY NMR, together with molecular docking and dynamic simulations were combined to shed light on the molecular basis of Siglec-7 recognition of two conformationally constrained Sialyl-Tn antigen analogs. We, therefore, identify the ligands epitope mapping and their conformational features and propose 3D models accurately describing the protein-ligand complexes. We found that the binding site of Siglec-7 can accommodate both synthetic analogs, with the sialic acid mainly involved in the interaction. Moreover, the flexibility of Siglec-7 loops allows a preferred accommodation of the more rigid compound bearing a biphenyl moiety at position 9 of the sialic acid that contributed to the interaction to a large extent. Our findings provided insights for developing potential novel high affinity ligands for Siglec-7 to hinder tumor evasion.  相似文献   

4.
This paper evaluates the use of oligovalent amyloid-binding molecules as potential agents that can reduce the enhancement of human immunodeficiency virus-1 (HIV-1) infection in cells by semen-derived enhancer of virus infection (SEVI) fibrils. These naturally occurring amyloid fibrils found in semen have been implicated as mediators that can facilitate the attachment and internalization of HIV-1 virions to immune cells. Molecules that are capable of reducing the role of SEVI in HIV-1 infection may, therefore, represent a novel strategy to reduce the rate of sexual transmission of HIV-1 in humans. Here, we evaluated a set of synthetic, oligovalent derivatives of benzothiazole aniline (BTA, a known amyloid-binding molecule) for their capability to bind cooperatively to aggregated amyloid peptides and to neutralize the effects of SEVI in HIV-1 infection. We demonstrate that these BTA derivatives exhibit a general trend of increased binding to aggregated amyloids as a function of increasing valence number of the oligomer. Importantly, we find that oligomers of BTA show improved capability to reduce SEVI-mediated infection of HIV-1 in cells compared to a BTA monomer, with the pentamer exhibiting a 65-fold improvement in efficacy compared to a previously reported monomeric BTA derivative. These results, thus, support the use of amyloid-targeting molecules as potential supplements for microbicides to curb the spread of HIV-1 through sexual contact.  相似文献   

5.
Fc‐Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc‐Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc‐Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product‐specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N‐ and O‐linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc‐fusion proteins. We also present case studies on the structural assessment of all commercially available Fc‐fusion proteins, based on the features and critical quality attributes of their ligand‐binding domains.  相似文献   

6.
We have investigated the efficacy of generating multiple sidechain conformations using a rotamer library in order to find the experimentally observed ligand binding site conformation of a protein in the presence of a bound ligand. We made use of a recently published algorithm that performs an exhaustive conformational search using a rotamer library to enumerate all possible sidechain conformations in a binding site. This approach was applied to a dataset of proteins whose structures were determined by X-ray and NMR methods. All chosen proteins had two or more structures, generally involving different bound ligands. By taking one of these structures as a reference, we were able in most cases to successfully reproduce the experimentally determined conformations of the other structures, as well as to suggest alternative low-energy conformations of the binding site. In those few cases where this procedure failed, we observed that the bound ligand had induced a high-energy conformation of the binding site. These results suggest that for most proteins that exhibit limited backbone motion, ligands tend to bind to low energy conformations of their binding sites. Our results also reveal that it is possible in most cases to use a rotamer search-based approach to predict alternative low-energy protein binding site conformations that can be used by different ligands. This opens the possibility of incorporating alternative binding site conformations to improve the efficacy of docking and structure-based drug design algorithms.  相似文献   

7.
The development of carbohydrate-based therapeutics has been frustrated by the low affinities that characterize protein-carbohydrate complexation. Because of the oligomeric nature of most lectins, the use of multivalency may offer a successful strategy for the creation of high-affinity ligands. The solid-phase evaluation of libraries of peptide-linked multivalent ligands facilitates rapid examination of a large fraction of linker structure space. If such solid-phase assays are to replicate solution binding behavior, the potential for intermolecular bivalent binding on bead surfaces must be eliminated. Here we report the solid-phase synthesis and analysis of peptide-linked, spatially segregated mono- and bivalent ligands for the legume lectin concanavalin A. Bead shaving protocols were used for the creation of beads displaying spatially segregated binding sequences on the surface of Tentagel resins. The same ligands were also synthesized on PEGA resin to determine the effect of ligand presentation on solid-phase binding. While we set out to determine the lower limit of assay sensitivity, the unexpected observation that intermolecular bivalent ligand binding is enhanced for bivalent ligands relative to monovalent ligands allowed direct observation of the level of surface blocking required to prevent intermolecular bivalent ligand binding. For a protein with binding sites separated by 65 A, approximately 99.9% of Tentagel(1) surface sites and 99.99% of the total sites on a PEGA bead must be blocked to prevent intermolecular bivalent binding. We also report agglutination and calorimetric solution-phase binding studies of mono- and bivalent peptide-linked ligands.  相似文献   

8.
The siglec family of sialic acid binding proteins participates in diverse cell surface biology that includes regulation of immune cell signaling and the interaction of neuronal cells with glial cells. The weak intrinsic affinity of the natural sialoside ligands has hampered the development of synthetic ligand based probes needed to elucidate their roles in siglec function. In this report, we describe a glycan microarray comprising a library of 9-acyl-substituted sialic acids incorporated into sialosides containing the Neu5Acalpha2-3Gal and Neu5Acalpha-6Gal linkages commonly recognized by the siglecs. The array is demonstrated to exhibit utility for detecting 9-acyl substituents that increase the affinity of siglecs for their ligands. Substituents that increase affinity are anticipated to be useful for the design of high affinity ligand based probes of siglec function.  相似文献   

9.
Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds. Rather than mimicking langerin's homotrimeric structure with a C3-symmetric scaffold, we developed readily accessible, easy-to-design bivalent binders. The method considers the requirements for bridging sugar binding sites and statistical rebinding as a means to both strengthen the interactions at single binding sites and amplify the avidity enhancement provided by chelation. This gave a 1150-fold net improvement over the affinity of the free ligand and provided a nanomolar binder (IC50=300 nM) for specific internalization by langerin-expressing cells.  相似文献   

10.
The membrane‐bound tumor‐associated glycoprotein MUC1 is aberrantly glycosylated in cancer cells compared with normal cells, and is therefore considered an attractive target for cancer immunotherapy. However, tumor‐associated glycopeptides from MUC1 do not elicit a sufficiently robust immune response. Therefore, antitumor vaccines were developed, which consist of MUC1 glycopeptides as the B epitopes and immune‐stimulating toll‐like receptor 2 (TLR 2) lipopeptide ligands. These fully synthetic vaccine candidates were prepared by solid‐phase synthesis of the MUC1 glycopeptides. The Pam3Cys lipopeptide, also synthesized on solid‐phase, was C‐terminally coupled to oligovalent lysine cores, which N‐terminally incorporate O‐propargyl oligoethylene glycol acyl side chains. The MUC1 glycopeptides and lipopeptide lysine constructs were then conjugated by click chemistry to give oligovalent synthetic vaccines. Oligovalent glycopeptide–lipopeptide conjugates are considered more immunogenic than their monovalent analogues.  相似文献   

11.
12.
Performance of Glide was evaluated in a sequential multiple ligand docking paradigm predicting the binding modes of 129 protein-ligand complexes crystallized with clusters of 2-6 cooperative ligands. Three sampling protocols (single precision-SP, extra precision-XP, and SP without scaling ligand atom radii-SP hard) combined with three different scoring functions (GlideScore, Emodel and Glide Energy) were tested. The effects of ligand number, docking order and druglikeness of ligands and closeness of the binding site were investigated. On average 36?% of all structures were reproduced with RMSDs lower than 2??. Correctly docked structures reached 50?% when docking druglike ligands into closed binding sites by the SP hard protocol. Cooperative binding to metabolic and transport proteins can dramatically alter pharmacokinetic parameters of drugs. Analyzing the cytochrome P450 subset the SP hard protocol with Emodel ranking reproduced two-thirds of the structures well. Multiple ligand binding is also exploited by the fragment linking approach in lead discovery settings. The HSP90 subset from real life fragment optimization programs revealed that Glide is able to reproduce the positions of multiple bound fragments if conserved water molecules are considered. These case studies assess the utility of Glide in sequential multiple docking applications.  相似文献   

13.
《Chemistry & biology》1996,3(2):97-104
Background: Influenza viruses use hemagglutinin (HA) arrays to bind to sialic acid moieties on the surface of cells; crosslinking of erythrocytes by this mechanism leads to hemagglutination. A number of synthetic polymers containing multiple sialic acid (Neu5Ac) groups as side chains are potent inhibitors of this process. Inhibition may be due to two mechanisms: polyvalent binding of the inhibitor's multiple Neu5Ac side chains to multiple HA sites on the viral surface, or steric stabilization of the viral particle by a layer of the adsorbed, water-swollen polymer, which prevents adhesion to the erythrocyte. The balance between these two effects is not yet known.Results: Polyacrylamides with multiple C-sialosides (PA(Neu5Ac)) were 2–20 fold more effective as inhibitors of virally mediated hemagglutination when assayed in the presence of Neu2en-NH2, a potent monomeric inhibitor of influenza neuraminidase (NA). The ability of monomeric inhibitors of NA to enhance the inhibition of hemagglutination in this assay correlated with the affinity of the monomer for NA.Conclusions: We propose that inhibitors of NA act by competing with the C-sialosides of PA(Neu5Ac) for binding to the active sites of the NA. Competitive displacement of Neu5Ac causes an expansion of the layer of polymeric gel adsorbed to the virus, enhancing its inhibitory effect. This study provides an example of synergy between two ligands directed toward the active sites of two different proteins, and reinforces the conclusion that steric stabilization is important for the activity of polyvalent inhibitors.  相似文献   

14.
We investigate the influence of variations of ligand protonation and tautomeric states on the protein-ligand binding energy landscape by applying the concept of structural consensus. In docking simulations, allowing full flexibility of the ligand, we explore whether the native binding mode could be successfully recovered using a non-native ligand protonation state. Here, we consider three proteins, dihydrofolate reductase, transketolase, and alpha-trichosanthin, complexed with ligands having multiple tautomeric forms. We find that for the majority of protonation and tautomeric states the native binding mode can be recovered without a great loss of accuracy.  相似文献   

15.
Molecular recognition in cell biological process is characterized with specific locks‐and‐keys interactions between ligands and receptors, which are ubiquitously distributed on cell membrane with topological clustering. Few topologically‐engineered ligand systems enable the exploration of the binding strength between ligand‐receptor topological organization. Herein, we generate topologically controlled ligands by developing a family of tetrahedral DNA frameworks (TDFs), so the multiple ligands are stoichiometrically and topologically arranged. This topological control of multiple ligands changes the nature of the molecular recognition by inducing the receptor clustering, so the binding strength is significantly improved (ca. 10‐fold). The precise engineering of topological complexes formed by the TDFs are readily translated into effective binding control for cell patterning and binding strength control of cells for cell sorting. This work paves the way for the development of versatile design of topological ligands.  相似文献   

16.
Using Monte Carlo simulations we study the influence of ligand architecture (valence, branching length) and structure (polydispersity) of a flat protective polymer layer on the accessibility of its functional groups and efficiency of receptor targeting. Two types of receptor surfaces were considered: the surface homogeneously covered with receptors and the surface containing a finite number of receptor sites. We found that multivalent ligands provide a larger density of targeting groups on the periphery of the layer compared to monovalent ligands for the same overall number of targeting groups per polymer layer. Because of their cooperativity in binding, multivalent ligands were also considerably more efficient in binding to both types of receptor surfaces. With an increase of ligand valence the number of functional groups attached to receptors noticeably increases. Short-branched divalent ligands show an especially high cooperativity in binding to closely packed receptors. However, in the case of immobile receptors separated by a finite distance from each other, the average distance between the functional groups belonging to the same short divalent ligand is too small to reach different receptors simultaneously and the receptor binding is less efficient than in the monovalent ligand case. Using a bidisperse protective polymer layer formed by short nonfunctional polymers and long functionalized polymers considerably increases the fraction of functional groups on the periphery of the layer. Simulations of receptor binding confirm the high efficiency of receptor targeting by bidisperse polymer layers, which is achieved by means of larger compressibility and higher capability of the ligands to reach out compared to the corresponding monodisperse layers. The concepts of multivalent ligands and a bidisperse protective polymer layer each have their own advantages which can be combined for an enhanced targeting effect.  相似文献   

17.
18.
The highly abundant GTP binding protein elongation factor Tu (EF-Tu) fulfills multiple roles in bacterial protein biosynthesis. Phage-displayed peptides with high affinity for EF-Tu were selected from a library of approximately 4.7 x 10(11) different peptides. The lack of sequence homology among the identified EF-Tu ligands demonstrates promiscuous peptide binding by EF-Tu. Homolog shotgun scanning of an EF-Tu ligand was used to dissect peptide molecular recognition by EF-Tu. All homolog shotgun scanning selectants bound to EF-Tu with higher affinity than the starting ligand. Thus, homolog shotgun scanning can simultaneously optimize binding affinity and rapidly provide detailed structure activity relationships for multiple side chains of a polypeptide ligand. The reported peptide ligands do not compete for binding to EF-Tu with various antibiotic EF-Tu inhibitors, and could identify an EF-Tu peptide binding site distinct from the antibiotic inhibitory sites.  相似文献   

19.
Heptyl α‐D ‐mannoside (HM) is a strong inhibitor of the FimH lectin that mediates the initial adhesion of the uropathogenic Escherichia coli (E. coli) to the bladder cells. We designed a set of multivalent HM ligands based on carbohydrate cores with structural valencies that range from 1 to 7. The chemical strategy used to construct the regular hydrophilic structures consisted of the repetition of a critical glucoside fragment. A primary amino group was grafted at the sugar reducing end to couple the multimers to a fluorescent label. A one‐pot synthetic approach was developed to tether the ligands and the fluorescein isothiocyanate (FITC) probe to the scaffold simultaneously. Isothermal calorimetry with the monomeric FimH lectin revealed nanomolar affinities and saturation of all structurally available binding sites on the multivalent HM ligands. Direct titrations domain showed almost strict correlation of enthalpy–entropy compensation with increasing valency of the ligand, whereas reverse titration calorimetry demonstrated negative cooperativity between the first and the second binding site of the divalent heptyl mannoside. A multivalency effect was nevertheless observed by inhibiting the haemagglutination of type‐1 piliated UTI89 E. coli, with a titer as low as 60 nM for the heptavalent HM ligand. An FITC‐labeled HM trimer showed capture and cross‐linking of living bacteria in solution, a phenomenon not previously described with low‐valency ligands.  相似文献   

20.
Changes in the relative populations of the monomer and asymmetric dimer forms of ristocetin A, upon binding of two molecules of ligand, suggest that ligand binding is negatively cooperative with respect to dimerization. However, strong hydrogen bonds formed in the binding sites of the ligands are reinforced in the dimer relative to the monomer, and the barrier to dissociation of the dimer is increased upon binding of the ligands. It is concluded that the interactions which are common in the binding of both ligands are made with positive cooperativity with respect to those involved in dimerization. The conclusions are relevant to the binding of ligands to proteins, where ligand binding energy can be derived from stabilization of the protein in its ligand-bound form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号