首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Schiff bases; NN′-bis(5-bromosalicylidene)-1,2-diaminoethane, BS, and 7-[(1-{5-bromo-2-hydroxyphenyl} methylidene)amino]-4-methylcoumarin, Sc, and two appropriate Schiff–Mannich bases, NN′-bis{5-bromo-3-[(diethylamino)methyl]salicylidene}-1,2-diaminoethane, BSM, and 7-[(1-{5-bromo-3-[(diethylamino)methyl]-2-hydroxyphenyl} methylidene)amino]-4-methylcoumarin, SMc, capable of intramolecular hydrogen bonding have been investigated by multinuclear magnetic resonance methods in both solid and liquid phases. In all of the compounds under investigation tautomeric equilibrium involving an intramolecular hydrogen bond has been found. The Schiff–Mannich bases, which can form two different kinds of H bonds at room temperature, form relatively weak H bonds with the imino nitrogen atoms. At low temperatures the tautomeric proton exchange becomes slow on the NMR time scale and both hydrogen-bonded forms can be observed by 1H, 13C, and 15N NMR methods. In the solid state the tautomeric process is frozen and only one H-bonded form is present. On the basis of 13C and 15N CPMAS NMR spectra this is identified as the form with hydrogen bonds involving the imino groups. This conclusion is in good agreement with previous results obtained by X-ray diffraction methods.

The investigated Schiff bases (BS and Sc) form relatively weak H bonds. The proton position in the hydrogen bridge, estimated from 15N and 13C chemical shifts, is very similar in both the solution and solid phases. In chloroform solution the observed tautomeric equilibria are almost insensitive to a temperature change within the range 223 to 303 K.  相似文献   


2.
The sodium environments in porous carbon materials prepared from NaOH activation of a char were investigated by means of multiple-field solid-state 23Na NMR measurements, carried out at magnetic fields of 4.7, 8.45 and 14.1 T, with single-pulse excitation and magic angle spinning (MAS). The recorded spectra showed a relatively featureless resonance with linewidth and peak shift strongly dependent on the magnetic field strength and on the hydration level of the samples. The existence of second-order quadrupolar effects was inferred, although the structural disorder and the mobile character associated with the Na environment precluded the direct observation of typical quadrupolar features in the MAS NMR spectra. The analysis of the spectra collected at multiple magnetic fields yielded the values of −2.8 ppm for the isotropic chemical shift and 1.8 MHz for the quadrupole coupling constant, which were interpreted as due to Na+ ions bonded to oxygenated groups at the edges of the graphene planes within the carbon pore network.  相似文献   

3.
Results from a solid-state 139La NMR spectroscopic investigation of the anhydrous lanthanum(III) halides (LaX3; X=F, Cl, Br, I) at applied magnetic fields of 7.0, 9.4, 11.7, 14.1, and 17.6 T are presented and highlight the advantages of working at high applied magnetic field strengths. The 139La quadrupolar coupling constants are found to range from 15.55 to 24.0 MHz for LaCl3 and LaI3, respectively. The lanthanum isotropic chemical shifts exhibit an inverse halogen dependence with values ranging from −135 ppm for LaF3 to 700 ppm for LaI3, which represents nearly half of the total lanthanum chemical shift range. The spans of the magnetic shielding tensors also vary widely, from 35 to 650 ppm for the solid LaF3 through LaI3. DFT calculations of the 139La electric field gradient and magnetic shielding tensors have been performed and provide a qualitative interpretation of the trends observed experimentally.  相似文献   

4.
何奕骅  杨光 《波谱学杂志》1998,15(4):295-302
用红外光谱、质子核磁共振谱对以SiH4/NH3/N2混合气体为源、用等离子体增强化学气相淀积法淀积的非晶氢化氮化硅(a-SiNx:H)薄膜进行了分析,结果表明膜中H以Si-H和N-H形式存在,均呈集聚和疏散两种分布状态,衬底温度影响氢的总量和分布均匀性,射频功率显著影响[N-H]/[Si-H],退火后氢仍呈集聚和疏散两种分布.  相似文献   

5.
The improper ferroelastic phase letovicite (NH4)3H(SO4)2 has been studied by 1H MAS NMR as well as by static 14N NMR experiments in the temperature range of 296–425 K. The 1H MAS NMR resonance from ammonium protons can be well distinguished from that of acidic protons. A third resonance appears just below the phase transition temperature which is due to the acidic protons in the paraelastic phase. The lowering of the second moment M2 for the ammonium protons takes place in the same temperature range as the formation of domain boundaries, while the signals of the acidic protons suffer a line narrowing in the area of Tc. The static 14N NMR spectra confirm the temperature of the motional changes of the ammonium tetrahedra. Two-dimensional 1H NOESY spectra indicate a chemical exchange between ammonium protons and the acidic protons of the paraphase.  相似文献   

6.
核磁共振(NMR)波谱作为一种操作简单、高效且重复性良好的技术手段,在脑科学领域的应用日益广泛,尤其是离体核磁共振氢谱(1H NMR)和活体核磁共振氢谱(1H MRS).1H NMR和1H MRS在实验设计、样品预处理、数据处理等方面各有优劣、各擅胜场.本综述主要从适用范围、样品预处理、数据处理分析等方面,对二者在方法学层面的研究现状进行总结和讨论,以期为脑科学领域的研究者进行大脑代谢相关研究时提供一定的参考和帮助.  相似文献   

7.
兼具磁共振响应的碳量子点光致发光材料的构筑和性能   总被引:1,自引:0,他引:1  
任先艳  刘丽华  李瑜 《发光学报》2015,36(8):861-867
碳量子点作为光功能组分和纳米载体用于构筑磁共振-荧光双模态分子探针的研究才刚刚开始。本文首次以兼作Gd3+源和碳源的钆喷酸单葡甲胺为前驱体,研究了热裂解温度、保温时间和加热速率对前驱体碳化程度、所得产物量子产率和Gd3+掺杂量的影响。结果显示,前驱体在经历合理的热裂解条件(热裂解温度不高于350℃)后,可简便地制得Gd3+螯合物掺杂的碳量子点。该碳量子点除了具有优异的发光能力外(量子产率~7.6%),还表现出磁共振响应(纵向弛豫率~6.5 mmol-1·L·s-1),可用作磁共振-荧光双模态分子影像探针。  相似文献   

8.
铕离子对tRNAPhe结构影响的NMR研究   总被引:1,自引:0,他引:1  
采用NMR波谱方法研究了溶液中铕离子对酵母苯丙氨酸转移核糖核酸(phenylalanine transfer ribonucleic acid,简称tRNAPhe)结构和构象变化的影响.Eu3+离子对tRNAPhe亚胺质子范围的1H NMR谱具有特殊的影响,酵母tRNAPhe亚胺质子谱作为Eu3+浓度函数的研究表明位于扩大二氢尿嘧啶螺旋(D-螺旋)的端梢三级碱基对G15·C48明显地受加入Eu3+的影响(向低场位移0.85);堆积在G15·C48上的U8·A14碱基对在存有1~2个Mg2+离子下亦受加入Eu3+的影响.酵母tRNAPhe中可能受到Eu3+影响的另一亚胺质子为G19·C56三级碱基对,由于G19·C56的亚胺质子共振位于高度叠加的12.6与12.2之间,其归属仅供参考.该碱基对有助于D-环对TΨC环的联接.配位Eu3+引起tRNA分子构象的变化并且导致一些谱峰向高场或低场位移.  相似文献   

9.
It was observed that the nanocrystallites of BaFe12O19 formed at 140°C under a 0.25 T magnetic field exhibited a higher saturation magnetization (6.1 emu/g at room temperature) than that of the sample (1.1 emu/g) obtained under zero magnetic field. Both of the two approaches yielded plain-like particles with an average particle size of 12 nm. However, the Curie temperature (Tc), a direct measuring of the strength of superexchange interaction of Fe3+–O2−–Fe3+, increased from 410°C for the nanoparticles prepared without an external field applied to 452°C for the particles formed under a 0.25 T magnetic field, which indicates that external magnetic fields can improve the occupancy of magnetic ions and then increase the superexchange interaction. This was confirmed by electron paramagnetic resonance and Mössbauer spectrum analysis. The results present in this paper suggest that in addition to oxygen defects, surface non-magnetic layer and a fraction of finer particles in the superparamagnetic range, cation vacancies should be responsible for the decreasing of saturation magnetization in magnetic nanoparticles.  相似文献   

10.
Cyclic cross-polarization from a proton magnetization to 13C and from there back to proton coherences permits the indirect, 13C chemical shift selective detection of hydrocarbon compounds in the proton NMR channel. This excitation technique can be combined with elements of one-, two- or three-dimensional magnetic resonance imaging permitting the measurement of time-resolved spatial distributions of hydrocarbon components. Beginning this sort of CYCLCROP mapping experiment with a non-equilibrium distribution of the constituents in the system allows one to study the time evolution of the concentrations of all components that can be identified by characteristic 13C resonance lines. As applications, studies of ingress, mixing, gel formation, transport and metabolism in living plants, long-time inter- and self-diffusion in complex hydrocarbon systems are suggested. As a test experiment, the diffusion of methanol in swollen polymethylmethacrylate was examined.  相似文献   

11.
Spin diffusion between 13CH3 groups in solids is studied both theoretically and experimentally. It is shown to be dominated by mutual spin flip–flops of protons belonging to neighbouring methyl groups. Also nonmethyl protons may contribute significantly if present in the sample. The spin–rotational ground state of 13CH3 consists of 16 sublevels. When their populations are used to describe spin diffusion, eight population combinations are shown to be important, two of them corresponding to the 13C–proton and proton–proton intra-methyl magnetic dipolar energies, Dc and Dp, respectively. Spin-diffusion transitions modulate these combinations so that a further reduction to two sets of four combinations is possible, with no coupling between the sets. Coupled differential equations are derived to describe the time dependence of the combinations in each set. They are solved numerically and compared with experimental results on a single crystal of aspirin with 13C-labelled methyl groups at the carbon resonance. The 13C NMR induction signal was observed as a function of time after the preparation either at the carbon resonance (a two-pulse sequence) or at the proton resonance (proton saturation). Usually carbon spectra were computed first and then three of the mentioned population combinations were obtained from the individual spectral components. Some results on the time dependence of Dc were also obtained directly from the amplitude of the out-of-phase induction signal. Theoretical predictions are found to describe semiquantitatively the overall time dependence of these three combinations and especially their variation with different initial conditions, which are discussed in detail. Also the partial transfer of the magnetic dipolar energy between Dc and Dp is nicely explained. Reasons for discrepancies are discussed.  相似文献   

12.
The nanostructured powders of the Ni95.4Mo4.6 and Ni99Mo1 alloys (average crystallite dimensions of 14 and 21 nm) were obtained by the electrochemical deposition from ammonium solutions of nickel and molybdenum salts. The method of differential scanning calorimetry (DSC) and measurement of temperature dependence of the powder's electrical resistivity, magnetic permeability and the thermoelectromotive force were employed to examine structural changes of the powders. The nanocrystalline alloys Ni95.4Mo4.6 and Ni99Mo1 were stable up to about 460 K. The thermal stabilization of the alloys takes place within the temperature interval of 460–570 K. As a result of this process, a decrease in the electrical resistivity and increases in magnetic permeability as well as electron state density in the proximity of the Fermi level are observed. The crystallization temperature depends upon the current density of powder formation. The nanocrystalline alloy Ni95.4Mo4.6 obtained at j=70 mA cm−2 becomes crystallized in the temperature range between 650 and 840 K, while the Ni99Mo1 alloy obtained at j=180 mA cm−2 crystallizes in the 580–950 K temperature interval. The electrical resistivity and magnetic permeability of the nanocrystalline alloy decreased while the alloy's electron state density near the Fermi level increased after the process of crystallization took place. The electrical resistivity decrease recorded during the structural changes was due to an increase in the electron state density in the proximity of the Fermi level, as well as to an increase in the mean free path of the conducting electrons.  相似文献   

13.
刘季红  靳焜  王平  罗根 《波谱学杂志》2019,36(3):341-349
七叶亭衍生物含有药效性较高的苯二酚基团,具有各种生物活性.本文以七叶亭(化合物1)为母体,通过将苯基引入到4位、将甲氧基与羟基分别引入到5、6、7和8位,得到一系列七叶亭衍生物2~14.首先以七叶亭为例,以DMSO-d6作为溶剂,采集了它的多种核磁共振(NMR)谱图(包括1H NMR、13C NMR、1H-13C HSQC、1H-13C HMBC),并进行了较详细的化学位移归属;然后对七叶亭衍生物2~141H和13C NMR进行了全归属;另外,讨论了取代基变化对七叶亭及其衍生物上的1H和13C NMR化学位移的影响;最后,使用GIAO和CSGT两种量子化学计算方法计算了七叶亭及其衍生物上的1H和13C NMR化学位移,并与它们的实测值做了比较.  相似文献   

14.
Nanostructures of diluted magnetic semiconductors were fabricated to study novel magneto-optical properties that are derived from quantum confined band electrons interacting with magnetic ions. Quantum dots (QDs) of Cd0.97Mn0.03Se were grown by the self-organization on a ZnSe substrate layer. QDs of Zn0.69Cd0.23Mn0.08Se and quantum wires (QWRs) of Cd0.92Mn0.08Se and Zn0.69Cd0.23Mn0.08Se were fabricated by the electron beam lithography. A single quantum well (QW) of ZnTe/Zn0.97Mn0.03Te and double QWs of Cd0.95Mn0.05Te–CdTe were grown by molecular beam epitaxy. Magneto-optical properties and the formation and relaxation dynamics of excitons were investigated by ultrafast time-resolved photoluminescence (PL) spectroscopy. Excitons in these nanostructures were affected by the low-dimensional confinement effects and the interaction with magnetic ion spins. The exciton luminescence of the Cd0.97Mn0.03Se QDs shows the confined exciton energy due to the dot size of 4–6 nm and also shows marked increase of the exciton lifetime with increasing the magnetic field. The QDs of Zn0.69Cd0.23Mn0.08Se fabricated by the electron beam lithography display narrow exciton PL spectrum due to the uniform shape of the dots. The exciton luminescence from the QWRs of Cd0.92Mn0.08Se and Zn0.69Cd0.23Mn0.08Se shows the influence of the one-dimensional confinement effect for the exciton energy and the luminescence is linearly polarized parallel to the wire direction. The transient PL from the ZnTe/Zn0.97Mn0.03Te QWs displays, by the magnetic field, the level crossing of the exciton spin states of the nonmagnetic and magnetic layers and the spatial spin separation for the excitons. Cd0.95Mn0.05Te–CdTe double QWs show the injection of the spin polarized excitons from the magnetic well to the nonmagnetic QW.  相似文献   

15.
A suggestion by Yatsiv for enhancing the strength of double quantum signals in high resolution nuclear magnetic resonance by use of radio-frequency sidebands is examined and shown to be practical. The theory shows that double quantum techniques can be extended to weakly coupled systems of nuclei (including systems of nuclei of different isotopic species). The AX part (with J AX=5·4 c/s, δAX/2π=99·2 c/s) of the proton magnetic resonance spectrum of maltol (3-hydroxy-2-methyl-γ-pyrone) serves to confirm experimentally the quantitative theoretical treatment for weakly coupled systems. An enhancement factor of eight was observed as can be seen in figure 2.  相似文献   

16.
测量质子化学位移各向异性(CSA)有助于表征分子结构与其动力学,但由于1H-1H同核偶极耦合相互作用很强及质子各向异性化学位移较小,测量质子化学位移各向异性仍具有巨大挑战,特别是对含有多种质子的生物大分子,如蛋白质.本文简要综述了测量质子化学位移各向异性的方法,包括同核去耦慢速魔角旋转方法、超快魔角旋转方法、对称重耦(RNnv)方法、xCSA方法以及量子化学计算方法.我们重点介绍了在高速魔角旋转条件下蛋白质氨基质子化学位移各向异性的测量及它们与氢键长度、蛋白质二级结构之间的关系.  相似文献   

17.
宽线固体核磁共振氢谱(1H NMR)是一种研究半晶高分子相结构的经典方法.本文以半晶聚乙烯的宽线固体1H NMR谱为例,探讨了通过Gaussian/Sinc、Gaussian和Lorentzian函数组合对宽线固体1H NMR谱图进行拟合的方案,并根据半晶聚乙烯的相结构成分对拟合得到的各信号成分进行归属.并在此基础上探讨了各个相结构中分子链运动与信号线型的相关性,以及利用宽线固体1H NMR谱测量半晶高分子结晶度存在的困难.  相似文献   

18.
袁雪霞  王超  王玉平  胡清  任先艳 《发光学报》2015,36(12):1383-1389
以同时提供钆源和碳源的钆喷酸单葡甲胺为前驱体,利用微波作为加热手段实现分子水平上的搅拌,达到低温、短时间内制得均匀的小粒度Gd3+掺杂碳量子点(Gd3+/CQDs-MH)的目的。当前驱体在250 ℃下微波水热反应45 min时,获得的Gd3+/CQDs-MH表现出较高的量子产率和极强的磁共振性能,避免了传统加热方式对碳量子点的发光能力和弛豫性能极难同时提高的矛盾。该条件下合成出尺寸约1.0 nm的碳量子点,其荧光量子产率为11.0%,Gd3+的掺杂质量分数达16.9%,纵向弛豫性能高达4 545.3 mmol-1·L·s-1 ([Gd3+]=0.01 mmol·L-1)。并且,该碳量子点对HeLa细胞无明显毒性,有望用作高弛豫性能和高发光性能的磁共振-荧光双模态探针。  相似文献   

19.
We report on electrical and magnetic properties of polyaniline (PANI) nanotubes (150 nm in diameter) and PANI/Fe3O4 nanowires (140 nm in diameter) containing Fe3O4 nanoparticles with a typical size of 12 nm. These systems were prepared by a template-free method. The conductivity of the nanostructures is 10−1–10−2 S/cm; and the temperature dependent resistivity follows a ln ρT−1/2 law. The composites (6 and 20 wt% of Fe3O4) show a large negative magnetoresistance compared with that of pure PANI nanotubes and a considerably lower saturated magnetization (Ms=3.45 emu/g at 300 K and 4.21 emu/g at 4 K) compared with the values measured from bulk magnetite (Ms=84 emu/g) and pure Fe3O4 nanoparticles (Ms=65 emu/g). AC magnetic susceptibility was also measured. It is found that the peak position of the AC susceptibility of the nanocomposites shifts to a higher temperature (>245 K) compared with that of pure Fe3O4 nanoparticles (190–200 K). These results suggest that interactions between the polymer matrix and nanoparticles take place in these nanocomposites.  相似文献   

20.
The population difference between ground states F = 4 and F = 3 is calculated for Cs atoms pumped on the D2 line by a resonant laser beam. The pumping efficiency for Cs atoms in a static magnetic field on two hyperfine transitions (6S1/2 F = 4 → 6P3/2 F′ = 3 and F′ = 4) is calculated for various pump laser intensities. The population difference as a function of the static magnetic field exhibits a dip centered at the zero magnetic field, which corresponds well with the Zeeman coherence between sublevels of the F = 4 state. The full-width at half-maximum (FWHM) of the dip as a function of the pump laser intensity shows abnormal power broadening behavior that differs for different hyperfine transitions. We present experimental results that agree with the theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号