首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
In this study a new procedure for analysis of nonlinear dynamical systems with periodically varying parameters under critical conditions is presented through an application of the Liapunov-Floquet (L-F) transformation. The L-F transformation is obtained by computing the state transition matrix associated with the linear part of the problem. The elements of the state transition matrix are expressed in terms of Chebyshev polynomials in timet which is suitable for algebraic manipulations. Application of Floquet theory and the eigen-analysis of the state transition matrix at the end of one principal period provides the L-F transformation matrix in terms of the Chebyshev polynomials. Since this is a periodic matrix, the L-F transformation matrix has a Fourier representation. It is well known that such a transformation converts a linear periodic system into a linear time-invariant one. When applied to quasi-linear equations with periodic coefficients, a dynamically similar system is obtained whose linear part is time-invariant and the nonlinear part consists of coefficients which are periodic. Due to this property of the L-F transformation, a periodic orbit in original coordinates will have a fixed point representation in the transformed coordinates. In this study, the bifurcation analysis of the transformed equations, obtained after the application of the L-F transformation, is conducted by employingtime-dependent center manifold reduction andtime-dependent normal form theory. The above procedures are analogous to existing methods that are employed in the study of bifurcations of autonomous systems. For the two physical examples considered, the three generic codimension one bifurcations namely, Hopf, flip and fold bifurcations are analyzed. In the first example, the primary bifurcations of a parametrically excited single degree of freedom pendulum is studied. As a second example, a double inverted pendulum subjected to a periodic loading which undergoes Hopf or flip bifurcation is analyzed. The methodology is semi-analytic in nature and provides quantitative measure of stability when compared to point mappings method. Furthermore, the technique is applicable also to those systems where the periodic term of the linear part does not contain a small parameter which is certainly not the case with perturbation or averaging methods. The conclusions of the study are substantiated by numerical simulations. It is believed that analysis of this nature has been reported for the first time for this class of systems.  相似文献   

2.
In this paper, bifurcation theory is employed to classify different dynamical behaviors arising in an underactuated mechanical system subject to bounded controls. The methodology is applied to an inertia wheel pendulum consisting of a simple pendulum with a rotating disk at the end. Restricting the magnitude of the control action places an important obstacle to the design of a continuous controller capable of swinging-up and stabilize the pendulum at the inverted position: the arm only can reach that position by means of oscillations of increasing amplitude. The controller is derived from a simple nonlinear state-feedback law, followed by a saturating device that limits the maximum amplitude of the control action applied to the system. This bound gives birth to a rich dynamical behavior, including pitchfork and Hopf bifurcations of equilibria, saddle-node bifurcations of periodic orbits, homoclinic and heteroclinic bifurcations. The global dynamics is analyzed in terms of certain control gains and a two-parameter bifurcation diagram is derived. It is shown that the dynamics on this bifurcation diagram is organized in a pair of codimension-two rotationally symmetric bifurcation points. Finally, it is found out that when the control gains lie on a certain region in the parameter space simultaneous stabilization of the upright position together with a large basin of attraction is obtained. Simulation results show that almost global stabilization of the system can be achieved.  相似文献   

3.
This paper presents a study of a three-parameter unfolding of a degenerate case in the Hopf--saddle-node singularity. This analysis shows that this nonlinear degeneracy is a source of interesting bifurcations of periodic orbits as well as global bifurcations of equilibria. The results achieved are applied to the study of a simple autonomous electronic circuit, which has just only one nonlinearity. The numerical results include the analysis of interesting resonance behaviors.  相似文献   

4.
This paper examines the bifurcation behavior of a planar pendulum subjected to high-frequency parametric excitation along a tilted angle. Parametric nonlinear identification is performed on the experimental system via an optimization approach that utilizes a developed approximate analytical solution. Experimental and theoretical efforts then consider the influence of a subtle tilt angle in the applied parametric excitation by contrasting the predicted and observed mean angle bifurcations with the bifurcations due to excitation applied in either the vertical or horizontal direction. Results show that small deviations from either a perfectly vertical or horizontal excitation will result in symmetry breaking bifurcations as opposed to pitchfork bifurcations.  相似文献   

5.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

6.
Bifurcations of an airfoil with nonlinear pitching stiffness in incompressible flow are investigated. The pitching spring is regarded as a spring with cubic stiffness. The motion equations of the airfoil are written as the four dimensional one order differential equations. Taking air speed and the linear part of pitching stiffness as the parameters, the analytic solutions of the critical boundaries of pitchfork bifurcations and Hopf bifurcations are obtained in 2 dimensional parameter plane. The stabilities of the equilibrium points and the limit cycles in different regions of 2 dimensional parameter plane are analyzed. By means of harmonic balance method, the approximate critical boundaries of 2-multiple semi-stable limit cycle bifurcations are obtained, and the bifurcation points of supercritical or subcritical Hopf bifurcation are found. Some numerical simulation results are given.  相似文献   

7.
含有参数激励非线性动力系统的现代理论的发展   总被引:7,自引:1,他引:6  
张伟  陈予恕 《力学进展》1998,28(1):1-16
本文综述了含有参数激励的非线性动力系统的响应、分岔与混沌问题的研究现状和方法,讨论了所存在的问题及其发展趋势.   相似文献   

8.
Fractal basin boundaries in a two-degree-of-freedom nonlinear system   总被引:1,自引:0,他引:1  
The final state for nonlinear systems with multiple attractors may become unpredictable as a result of homoclinic or heteroclinic bifurcations. The fractal basin boundaries due to such bifurcations for a four-well, two-degree-of-freedom, nonlinear oscillator under sinusoidal forcing have been studied, based on a theory of homoclinic bifurcation inn-dimensional vector space developed by Palmer. Numerical simulation is used as a means of demonstrating the consequences of the system dynamics when the bifurcations occur, and it is shown that the basin boundaries in the configuration space (x, y) become fractal near the critical value of the heteroclinic bifurcations.  相似文献   

9.
Many technical stituations are adequately described only by means of nonlinear mathematical models. Long-term or steady-state behavior of such systems can have a periodic, quasi-periodic, or chaotic character. Changes of the qualitative behavior are characterized by local and global bifurcations. The aim of this paper is to present a systematic analysis approach for the study of different bifurcation phenomena in nonlinear engineering systems. The applicability of the approach is demonstrated with examples.  相似文献   

10.
Nonlinear planar oscillations of suspended cables subjected to external excitations with three-to-one internal resonances are investigated. At first, the Galerkin method is used to discretize the governing nonlinear integral–partial-differential equation. Then, the method of multiple scales is applied to obtain the modulation equations in the case of primary resonance. The equilibrium solutions, the periodic solutions and chaotic solutions of the modulation equations are also investigated. The Newton–Raphson method and the pseudo-arclength path-following algorithm are used to obtain the frequency/force–response curves. The supercritical Hopf bifurcations are found in these curves. Choosing these bifurcations as the initial points and applying the shooting method and the pseudo-arclength path-following algorithm, the periodic solution branches are obtained. At the same time, the Floquet theory is used to determine the stability of the periodic solutions. Numerical simulations are used to illustrate the cascades of period-doubling bifurcations leading to chaos. At last, the nonlinear responses of the two-degree-of-freedom model are investigated.  相似文献   

11.
We analyze a second-order, nonlinear delay-differential equation with negative feedback. The characteristic equation for the linear stability of the equilibrium is completely solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The bifurcations occurring as the linear stability is lost are investigated by the construction of a center manifold: The nature of Hopf bifurcations and more degenerate, higher-codimension bifurcations are explicitly determined.  相似文献   

12.
We compare two approaches for determining the normal forms of Hopf bifurcations in retarded nonlinear dynamical systems; namely, the method of multiple scales and a combination of the method of normal forms and the center-manifold theorem. To describe and compare the methods without getting involved in the algebra, we consider three examples: a scalar equation, a single-degree-of-freedom system, and a three-neuron model. The method of multiple scales is directly applied to the retarded differential equations. In contrast, in the second approach, one needs to represent the retarded equations as operator differential equations, decompose the solution space of their linearized form into stable and center subspaces, determine the adjoint of the operator equations, calculate the center manifold, carry out details of the projection using the adjoint of the center subspace, and finally calculate the normal form on the center manifold. We refer to the second approach as center-manifold reduction. Finally, we consider a problem in which the retarded term appears as an acceleration and treat it using the method of multiple scales only. Communicated by G. Rega  相似文献   

13.
This paper considers the dynamic response of coupled, forced and lightly damped nonlinear oscillators with two degree-of-freedom. For these systems, backbone curves define the resonant peaks in the frequency–displacement plane and give valuable information on the prediction of the frequency response of the system. Previously, it has been shown that bifurcations can occur in the backbone curves. In this paper, we present an analytical method enabling the identification of the conditions under which such bifurcations occur. The method, based on second-order nonlinear normal forms, is also able to provide information on the nature of the bifurcations and how they affect the characteristics of the response. This approach is applied to a two-degree-of-freedom mass, spring, damper system with cubic hardening springs. We use the second-order normal form method to transform the system coordinates and identify which parameter values will lead to resonant interactions and bifurcations of the backbone curves. Furthermore, the relationship between the backbone curves and the complex dynamics of the forced system is shown.  相似文献   

14.
Introduction FangShaomeiandGuoBoling[1]consideredthefollowingtimeperiodicproblemof dampedcouplednonlinearwaveequations:ut f(u)x-αuxx βuxxx 2vvx=G1(u,v) h1(x),vt-γvxx 2(uv)x g(v)x=G2(u,v) h2(x),(1)whereα,β,γareconstants,andγ>0,β≠0.Undertheperiodicboundaryconditions,the authorsobtainedtheuniqueexistenceofstrongsolutionsfortheabovesystem.InthispaperweshallconsiderbifurcationbehaviorofthetravellingwavesolutionsofEq.(1)inthecaseGi(u,v)≡0,hi(u,v)≡0(i=1,2).Letξ=x-ct,u=u(x-ct),where cis…  相似文献   

15.
Bifurcations in Nonlinear Discontinuous Systems   总被引:7,自引:0,他引:7  
This paper treats bifurcations of periodic solutions indiscontinuous systems of the Filippov type. Furthermore, bifurcations offixed points in non-smooth continuous systems are addressed. Filippov'stheory for the definition of solutions of discontinuous systems issurveyed and jumps in fundamental solution matrices are discussed. It isshown how jumps in the fundamental solution matrix lead to jumps of theFloquet multipliers of periodic solutions. The Floquet multipliers canjump through the unit circle causing discontinuous bifurcations.Numerical examples are treated which show various discontinuousbifurcations. Also infinitely unstable periodic solutions are addressed.  相似文献   

16.
In fluid systems exhibiting a gradual transition to a turbulent state in dependence on external parameters the increasing complexity of motion is usually caused by sequences of bifurcations in the solution space. Through the consideration of the configuration of highest symmetry compatible with the basic physical problem most bifurcations can be identified by their symmetry breaking properties. Because it can incorporate all available symmetries in the selection of expansion functions, the Galerkin method turns out to be especially useful for the numerical analysis of highly symmetric fluid flow and their instabilities. By allowing for the broken symmetries, the nonlinear evolution of the flow can be followed numerically through several bifurcations. A complete stability analysis with respect to arbitrary infinitesimal disturbances is possible on the basis of Floquet's theory. This method has been applied in cases of Taylor-Couette flow, Rayleigh-Bénard convection, and shear flows with cubic profiles.  相似文献   

17.
A methodology is first presented for analyzing long time response of periodically exited nonlinear oscillators. Namely, a systematic procedure is employed for determining periodic steady state response, including harmonic and superharmonic components. The stability analysis of the located periodic motions is also performed, utilizing results of Froquet theory. This methodology is then applied to a special class of two degree of freedom nonlinear oscillators, subjected to harmonic excitation. The numberical results presented in the second part of this study illustrate effects caused by the interaction of the modes as well as effects of the nonlinearities on the steady state response of these oscillators. In addition, sequences of bifurcations are analyzed for softening systems, leading to unbounded response of the model examined. Finally, the importance of higher harmonics on the response of systems with strongly nonlinear characteristics is investigated.  相似文献   

18.
This paper investigates the nonlinear dynamics of a doubly clamped piezoelectric nanobeam subjected to a combined AC and DC loadings in the presence of three-to-one internal resonance. Surface effects are taken into account in the governing equation of motion to incorporate the associated size effects at nanoscales. The reduced-order model equation (ROM) is obtained based on the Galerkin method. The multiple scales method is applied directly to the nonlinear equation of motion and associated boundary conditions to obtain the modulation equations. The equilibrium solutions of the modulation equations and the dynamic solutions of the ROM equation are investigated in the case of primary and principal parametric resonances of the first mode. Stability, bifurcations and frequency response curves of the nanobeam are investigated. Dynamic behaviors of the motion are shown in the form of time traces, phase portraits, Poincare sections and fast Fourier transforms. The results indicate rich dynamic behaviors such as Hopf bifurcations, periodic and quasiperiodic motions in both directly and indirectly excited modes illustrating the influence of modal interactions on the response.  相似文献   

19.
Gobat  Giorgio  Guillot  Louis  Frangi  Attilio  Cochelin  Bruno  Touzé  Cyril 《Meccanica》2021,56(8):1937-1969
Meccanica - Quasi-periodic solutions can arise in assemblies of nonlinear oscillators as a consequence of Neimark-Sacker bifurcations. In this work, the appearance of Neimark-Sacker bifurcations is...  相似文献   

20.
Feedback control of piecewise smooth discrete-time systems that undergo border collision bifurcations is considered. These bifurcations occur when a fixed point or a periodic orbit of a piecewise smooth system crosses or collides with the border between two regions of smooth operation as a system parameter is quasistatically varied. The class of systems studied is piecewise smooth maps that depend on a parameter, where the system dimension n can take any value. The goal of the control effort in this work is to replace the bifurcation so that in the closed-loop system, the steady state remains locally attracting and locally unique (“nonbifurcation with persistent stability”). To achieve this, Lyapunov and linear matrix inequality (LMI) techniques are used to derive a sufficient condition for nonbifurcation with persistent stability. The derived condition is stated in terms of LMIs. This condition is then used as a basis for the design of feedback controls to eliminate border collision bifurcations in piecewise smooth maps and to produce the desirable behavior noted earlier. Numerical examples that demonstrate the effectiveness of the proposed control techniques are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号