首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Multiple attractor bifurcations occurring in piecewise smooth dynamical systems may lead to potentially damaging situations. In order to avoid these in physical systems, it is necessary to know their conditions of occurrence. Using the piecewise-linear 2D normal form, we investigate which types of multiple attractor bifurcations may occur and where in the parameter space they can be expected. For piecewise smooth maps, multiple attractor bifurcations will be expected to occur if the condition we identified for the piecewise-linear 2D normal form are satisfied in the close neighborhood of the border.  相似文献   

2.
Discontinuous maps occur in many practical systems, and yet bifurcation phenomena in such maps is quite poorly understood. In this paper, we report some important results that help in analyzing the border collision bifurcations that occur in n-dimensional discontinuous maps. For this purpose, we use the piecewise linear approximation in the neighborhood of the plane of discontinuity. Earlier, Feigin had made a similar analysis for general n-dimensional piecewise smooth continuous maps. In this paper, we extend that line of work for maps with discontinuity to obtain the general conditions of existence of period-1 and period-2 fixed points before and after a border collision bifurcation. The application of the method is then illustrated using a specific example of a two-dimensional discontinuous map. This work was supported in part by the BRNS, Department of Atomic Energy (DAE), Government of India under project no. 2003/37/11/BRNS.  相似文献   

3.
On-off thrusters are frequently used as actuators for attitude control and are typically subject to switching constraints. In systems with switching actuators, different types of persistent motions may be found, and in the presence of model uncertainties, the occurrence of bifurcations in such systems can seriously affect performance. In this paper the nature of persistent motions in an attitude control system with actuators subject to switching-time restrictions is examined to provide useful information for control design in the presence of uncertainty. The main tools used are bifurcation diagrams, Poincaré maps and Lyapunov spectrum. Border-collision type bifurcations are characterized in this piecewise affine system, as well as unusual patterns of persistent motion. Multistability and complex-switching sequences are also observed, revealing the existence of motions with sensitive dependence on initial conditions.  相似文献   

4.
The FitzHugh–Nagumo-like systems are of fundamental importance to the understanding of the qualitative nature of nerve impulse propagation. Our work provides a numerical investigation of bifurcations associated with a family of piecewise differentiable canonical maps for a planar FitzHugh–Nagumo system. We describe the bifurcation structure of the maps with the variation of the parameters.  相似文献   

5.
A variety of border collision bifurcations in a three-dimensional (3D) piecewise smooth chaotic electrical circuit are investigated. The existence and stability of the equilibrium points are analyzed. It is found that there are two kinds of non-smooth fold bifurcations. The existence of periodic orbits is also proved to show the occurrence of non-smooth Hopf bifurcations. As a composite of non-smooth fold and Hopf bifurcations, the multiple crossing bifurcation is studied by the generalized Jacobian matrix. Some interesting phenomena which cannot occur in smooth bifurcations are also considered.  相似文献   

6.
This paper treads discontinuous bifurcation in piecewise smooth systems of Filippov type. These bifurcations occur when a fixed point or a periodic orbit crosses with the border between two regions of smooth behavior. A detailed analysis of generalization Poincaré map and monodromy matrix which are related shows that subfamily of system with invariant cone-like objects is foliated by periodic orbits and determines its stability. In addition, we introduce a theoretical framework for analyzing 3D perturbed nonlinear piecewise smooth systems and give necessary conditions so that different types of bifurcations occur. The analysis identifies criteria for the existence of a novel bifurcation based on sensitively the location of the return map. Moreover, the piecewise smooth Melnikov function and sufficient conditions of the existence of the periodic orbits for nonlinear perturbed system are explicitly obtained.  相似文献   

7.
江俊  高文辉 《力学学报》2013,45(1):16-24
针对由一个线性子系统和一个非线性子系统构成的两自由度非自治分段光滑非线性平面运动系统的响应特性开展了研究. 该分段光滑非线性模型可用来确定对称转子/定子系统的主要碰摩响应, 且在反映非光滑系统典型特性上具有明显的特征:(1) 切换分界面是由两自由度坐标共同决定的一个幅值曲面;(2) 子系统周期解与分界面的擦碰, 不是发生在一个点上, 而是同时发生在解的所有点上;(3) 完整系统未发现由两子系统共同作用而产生的周期解. 因此, 对于该非光滑系统响应特性的研究, 很难直接利用目前有关非光滑系统平衡点和周期解分岔分析的方法. 为此, 尝试了根据子系统的响应特性, 划分出完整系统响应对分界面处切换的敏感区和非敏感区, 并针对非敏感区可由子系统解的特性求得完整系统的响应, 而针对敏感区通过子系统动力学特征的分析有助于解释完整系统响应的生成机制.  相似文献   

8.
The non-linear modal properties of a vibrating 2-DOF system with non-smooth (piecewise linear) characteristics are investigated; this oscillator can suitably model beams with a breathing crack or systems colliding with an elastic obstacle. The system having two discontinuity boundaries is non-linearizable and exhibits the peculiar feature of a number of non-linear normal modes (NNMs) that are greater than the degrees of freedom. Since the non-linearities are concentrated at the origin, its non-linear frequencies are independent of the energy level and uniquely depend on the damage parameter. An analysis of the NNMs has been performed for a wide range of damage parameter by employing numerical procedures and Poincaré maps. The influence of damage on the non-linear frequencies has been investigated and bifurcations characterized by the onset of superabundant modes in internal resonance, with a significantly different shape than that of modes on fundamental branch, have been revealed.  相似文献   

9.
This paper argues for the possibility of purposely approximating smooth vector fields with highly localized variability in terms of piecewise smooth vector fields for the purpose of analyzing the bifurcation characteristics of the corresponding dynamical systems. Here, emphasis is placed on the changes in system response that result as a periodic trajectory begins to incorporate a brief flow segment in the region of high variability under variations in some system parameter. In particular, it is shown that tools from the theory of grazing bifurcations in piecewise-smooth systems may be employed to qualitatively predict the bifurcation scenario associated with such a transition both in terms of the shape of the branch of periodic trajectories and in terms of the persistence of a local attractor in the vicinity of the original periodic trajectory.  相似文献   

10.
In the present paper, we discuss bifurcations of chaotic attractors in piecewise smooth one-dimensional maps with a high number of switching manifolds. As an example, we consider models of DC/AC power electronic converters (inverters). We demonstrate that chaotic attractors in the considered class of models may contain parts of a very low density, which are unlikely to be observed, neither in physical experiments nor in numerical simulations. We explain how the usual bifurcations of chaotic attractors (merging, expansion and final bifurcations) in piecewise smooth maps with a high number of switching manifolds occur in a specific way, involving low-density parts of attractors, and how this leads to an unusual shape of the bifurcation diagrams.  相似文献   

11.
The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, τ, scales according to an inverse square-root power law, τ∼(μμ c )−1/2, as the bifurcation parameter μ, is driven further away from its critical value, μ c . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.  相似文献   

12.
We study bifurcations of bounded solutions from homoclinic orbits for time-perturbed discontinuous systems. Functional analytic method is used. An illustrative example of a periodically perturbed piecewise linear differential equation in is presented.   相似文献   

13.
Normal modes for piecewise linear vibratory systems   总被引:2,自引:0,他引:2  
A method to construct the normal modes for a class of piecewise linear vibratory systems is developed in this study. The approach utilizes the concepts of Poincaré maps and invariant manifolds from the theory of dynamical systems. In contrast to conventional methods for smooth systems, which expand normal modes in a series form around an equilibrium point of interest, the present method expands the normal modes in a series form of polar coordinates in a neighborhood of an invariant disk of the system. It is found that the normal modes, modal dynamics and frequency-amplitude dependence relationship are all of piecewise type. A two degree of freedom example is used to demonstrate the method.  相似文献   

14.
In this paper a harmonically excited linear oscillator with a play is investigated. Direct numerical simulation and numerical continuation techniques were employed to study the system behaviour. To conduct the numerical analysis, the system differential equations were transformed into the autonomous form and were then solved using our newly developed in-house Matlab-based computational suite ABESPOL [1]. The results are presented in form of trajectories and Poincaré maps on the phase plane, bifurcation diagrams and basins of attraction. The bifurcation analysis was supported by a path following method. The influence of each system parameter (except gap) on the system dynamics was studied in detail. The bifurcations known as interior crisis and boundary crisis were observed and discussed in this work. Notably, the parameter regions where various types of grazing induced bifurcations occurred were detected and investigated.  相似文献   

15.
Experimental studies and mathematical modelling have been carried out for a nearly symmetrical piecewise linear oscillator to examine the bifurcation scenarios close to grazing. Higher period responses are found after grazing, although the period adding windows predicted as a generic feature of one-sided impacting systems are not observed. It appears that the presence of the second high stiffness spring stabilises additional periodic orbits. The global solution for a piecewise smooth model is developed by stitching locally valid maps. For the symmetrical case the highest period of response is three, if asymmetry in the gap and/or stiffness is introduced then higher periodic orbits are observed. Only small asymmetries are required to achieve a good correspondence with experiments. Further examination shows that many attractors are not stable to even small changes in the symmetry of the system.  相似文献   

16.
In this study a new procedure for analysis of nonlinear dynamical systems with periodically varying parameters under critical conditions is presented through an application of the Liapunov-Floquet (L-F) transformation. The L-F transformation is obtained by computing the state transition matrix associated with the linear part of the problem. The elements of the state transition matrix are expressed in terms of Chebyshev polynomials in timet which is suitable for algebraic manipulations. Application of Floquet theory and the eigen-analysis of the state transition matrix at the end of one principal period provides the L-F transformation matrix in terms of the Chebyshev polynomials. Since this is a periodic matrix, the L-F transformation matrix has a Fourier representation. It is well known that such a transformation converts a linear periodic system into a linear time-invariant one. When applied to quasi-linear equations with periodic coefficients, a dynamically similar system is obtained whose linear part is time-invariant and the nonlinear part consists of coefficients which are periodic. Due to this property of the L-F transformation, a periodic orbit in original coordinates will have a fixed point representation in the transformed coordinates. In this study, the bifurcation analysis of the transformed equations, obtained after the application of the L-F transformation, is conducted by employingtime-dependent center manifold reduction andtime-dependent normal form theory. The above procedures are analogous to existing methods that are employed in the study of bifurcations of autonomous systems. For the two physical examples considered, the three generic codimension one bifurcations namely, Hopf, flip and fold bifurcations are analyzed. In the first example, the primary bifurcations of a parametrically excited single degree of freedom pendulum is studied. As a second example, a double inverted pendulum subjected to a periodic loading which undergoes Hopf or flip bifurcation is analyzed. The methodology is semi-analytic in nature and provides quantitative measure of stability when compared to point mappings method. Furthermore, the technique is applicable also to those systems where the periodic term of the linear part does not contain a small parameter which is certainly not the case with perturbation or averaging methods. The conclusions of the study are substantiated by numerical simulations. It is believed that analysis of this nature has been reported for the first time for this class of systems.  相似文献   

17.
In this paper we consider a five-parameter family of planar vector fields where μ = (μ 1, μ 2, μ 3, μ 4, μ 5), which is a small parameter vector, and c(0) ≠ 0. The family X μ represents the generic unfolding of a class of nilpotent cusp of codimension five. We discuss the local bifurcations of X μ, which exhibits numerous kinds of bifurcation phenomena including Bogdanov-Takens bifurcations of codimension four in Li and Rousseau (J. Differ. Eq. 79, 132–167, 1989) and Dumortier and Fiddelaers (In: Global analysis of dynamical systems, 2001), and Bogdanov-Takens bifurcations of codimension three in Dumortier et al. (Ergodic Theory Dynam. Syst. 7, 375–413, 1987) and Dumortier et al. (Bifurcations of planar vector fields. Nilpotent singularities and Abelian integrals, 1991). After making some rescalings, we obtain the truncated systems of X μ . For a truncated system, all possible bifurcation sets and related phase portraits are obtained. When the truncated system is a Hamiltonian system, the bifurcation diagram and the related phase portraits are given too. Hopf bifurcations are studied for another truncated system. And it shows that the system has the Hopf bifurcations of codimension at most three, and at most three limit cycles occur in the small neighborhood of the Hopf singularity. Dedicated to Professor Zhifen Zhang in the occasion of her 80th birthday  相似文献   

18.
Unlike classical bifurcations, border-collision bifurcations occur when, for example, a fixed point of a continuous, piecewise C 1 map crosses a boundary in state space. Although classical bifurcations have been much studied, border-collision bifurcations are not well understood. This paper considers a particular class of border-collision bifurcations, i.e., border-collision period-doubling bifurcations. We apply a subharmonic perturbation to the bifurcation parameter, which is also known as alternate pacing, and we investigate the response under such pacing near the original bifurcation point. The resulting behavior is characterized quantitatively by a gain, which is the ratio of the response amplitude to the applied perturbation amplitude. The gain in a border-collision period-doubling bifurcation has a qualitatively different dependence on parameters from that of a classical period-doubling bifurcation. Perhaps surprisingly, the differences are more readily apparent if the gain is plotted versus the perturbation amplitude (with the bifurcation parameter fixed) than if plotted versus the bifurcation parameter (with the perturbation amplitude fixed). When this observation is exploited, the gain under alternate pacing provides a useful experimental tool to identify a border-collision period-doubling bifurcation.  相似文献   

19.
In this paper we investigate the bifurcations and the chaos of a piecewise linear discontinuous (PWLD) system based upon a rig-coupled SD oscillator, which can be smooth or discontinuous (SD) depending on the value of a system parameter, proposed in [18], showing the equilibrium bifurcations and the transitions between single, double and triple well dynamics for smooth regions. All solutions of the perturbed PWLD system, including equilibria, periodic orbits and homoclinic-like and heteroclinic-like orbits, are obtained and also the chaotic solutions are given analytically for this system. This allows us to employ the Melnikov method to detect the chaotic criterion analytically from the breaking of the homoclinic-like and heteroclinic-like orbits in the presence of viscous damping and an external harmonic driving force. The results presented here in this paper show the complicated dynamics for PWLD system of the subharmonic solutions, chaotic solutions and the coexistence of multiple solutions for the single well system, double well system and the triple well dynamics.  相似文献   

20.
We consider the set of 2π-periodic solutions of the ordinary differential equation u′′ + g(u) = 0 for a nonlinearity , satisfying a dissipative condition of the form for , and under the generic assumption that the potential G, given by , is a Morse function. Under these assumptions, we characterize the period maps realizable by planar Hamiltonian systems of the form . Considering the Morse type of G, the set of periodic orbits in the phase space is decomposed into disks and annular regions. Then, the realizable period maps are described in terms of sets of sequences of positive integers corresponding to the lap numbers of the 2π-periodic solutions. This leads to a characterization of the classes of Morse–Smale attractors that are realizable by dissipative semilinear parabolic equations of the form defined on the circle, .   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号