首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
孙宗琦  蒋方忻 《物理学报》1989,38(10):1679-1686
为了阐明体心立方晶体中外应力、位错应力和八面体间隙原子相互作用的本质,从理论上解释S-K弛豫和位错对Snoek弛豫的影响,提出一个简化的含有可动位错的一维弹性偶极子格点模型,讨论位错应力场中间隙原子的非线性应力感生扩散,为进一步对实际晶体的从头数值计算奠定基础。对一维模型的计算机模拟计算,表明位错应力场使得间隙原子形成具有非线性扩散特征的缺陷Fermi-Dirac分布,并增强了Snoek效应,在Snoek峰高温侧出现一个非线性扩散Snoek型内耗峰。 关键词:  相似文献   

3.
In this study, molecular dynamics simulations were performed to elucidate the effects of stacking fault energy (SFE) on the physical interactions between an edge dislocation and a spherical void in the crystal structure of face-centred cubic metals at various temperatures and for different void sizes. Four different types of interaction morphologies were observed, in which (1) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the trailing partial; (2) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the leading partial; (3) the partial dislocations detached from the void almost simultaneously without jog formation; and (4) the partial dislocations detached from the void almost simultaneously with jog formation. With an increase in void size or SFE, the interaction morphology changed in the above-mentioned order. It was observed that the magnitude of the critical resolved shear stress (CRSS) and its dependence on the SFE were determined by these interaction morphologies. The value of the CRSS in the case of interaction morphology (1) is almost equal to an analytical one based on the linear elasticity by employing the Burgers vector of a single partial dislocation. The maximum value of the CRSS is also obtained by the analytical model with the Burgers vector of the two partial dislocations.  相似文献   

4.
Various types of dislocation stoppers are identified and their basic parameters are determined. Using dislocation loops as an example, the effect of internal stresses on the motion of linear defects in n-and p-Si in the field of external elastic forces is estimated. It is found that preliminary magnetic treatment of silicon plates activates the dislocation transport. In the absence of external mechanical loads, displacement of dislocation half-loops (30–50 μm) in the nonuniform field of internal stresses in a silicon crystal with a scratch (stress concentrator) is detected experimentally during isothermal annealing for 0.5–3 h at a temperature of 600–700°C. Dislocation transport is described taking into account the intrinsic (lattice) potential barrier of the crystal and two types of stoppers on the basis of magnetosensitive point defects (dopant) and “forest” dislocations. A kinetic model is proposed for describing the magnetostimulated variation of the mobility of linear defects associated with the formation of long-lived complexes with a paramagnetic impurity. It is found experimentally that the velocity of dislocations in n-and p-Si increases by a factor of 2 and 3, respectively, upon treatment of the semiconductor in a magnetic field B=1 T for 5–45 min. The “magnetic memory” effect in silicon containing dislocations is detected and kinetic aspects of the effect under natural conditions of sample storage after the removal of the magnetic field are considered. Partial velocities of dislocations and their delay times at various types of stoppers are calculated from the matching of experiment with theory.  相似文献   

5.
L. N. McCartney 《哲学杂志》2013,93(15):1575-1610
A theoretical model is described to predict equilibrium distributions of misfit dislocations in one or more anisotropic epitaxial layers of a multilayered system deposited on a thick substrate. Each layer is regarded as having differing elastic and lattice constants, and the system is subject to biaxial in-plane mechanical loading. A stress transfer methodology is developed enabling both the stress and displacement distributions in the system to be estimated for cases where the interacting dislocations are of a pure edge configuration. Energy methods are used to determine equilibrium distributions of the dislocations for given external applied stress states. It is shown that the new model accurately reproduces known exact analytical solutions for the special case of just one isotropic epitaxial layer applied to an isotropic semi-infinite substrate having the elastic constants of the substrate but differing lattice constants. The model is used to consider equilibrium dislocation distributions in capped epitaxial systems with misfit dislocations. It is shown that the simplifying assumptions often made in the literature, regarding the uniformity of elastic properties and the neglect of anisotropy, can lead to critical thicknesses being underestimated by 15–18%. The application of uniaxial tensile stresses increases the value of critical thicknesses. The model can be used to analyse dislocations in various non-neighbouring layers provided the dislocation density has the same value in all layers in which dislocations have formed. This type of analysis enables the prediction of the deformation of metallic multilayers subject to mechanical and thermal loading.  相似文献   

6.
This paper presents the results of an experimental investigation into the mobility of edge dislocations in KCl:Ca single crystals and the effect of a static magnetic field of 0.3 T on the dislocation mobility. The experiments on the effect of a magnetic field on the dislocation mobility were carried out with the use of a high-resolution (1 ms) method that permits in situ measurements of the sample dipole moment induced by the motion of charged dislocations as the crystal is being deformed. It is found that the starting stress is reduced in a magnetic field and the activation volume for overcoming of point defects by the dislocations is increased. It is further found that the magnetic field increases the rate of motion of the dislocations at the initial stage of deformation (to the point of dislocation multiplication) but has no effect on the mobility in the multiplication stage. Fiz. Tverd. Tela (St. Petersburg) 39, 630–633 (April 1997)  相似文献   

7.
Methods of computer simulation developed for hcp crystals were used to analyze the motion of gliding dislocations through composite ensembles of points obstacles and vibrating forest dislocations. It is shown that the possibility for forest dislocations to suffer forced vibrations increases the transparency of a composite ensemble. It was established that as the amplitude of dislocation vibrations reaches a certain limit depending on the strength of point obstacles, such obstacles in a composite ensemble almost completely lose their ability to hinder the motion of gliding dislocations.  相似文献   

8.
The elastic interaction between two parallel dislocations which can glide in non-parallel slip planes is studied under the simplifying assumption that the dislocation glide velocity is proportional to stress. The motion of the two dislocations is represented by a motion of one reference point in a configuration plane. It is concluded that the contribution of the long-range elastic interaction between individual dislocations from different slip systems to work hardening is negligible, compared to the contribution from the formed attractive junctions. Especially, two parallel edge dislocations with mutually perpendicular Burgers vectors can co-exist in minimum energy positions, however, they can be separated by an arbitrarily small external stress.  相似文献   

9.
The method of molecular dynamics is applied to the study of the effect of post-cascade shock waves generated in a solid irradiated by high-energy particles on the heterogeneous formation of dislocation loops in a simulated gold crystal containing a spherical nanovoid, which is subjected to shear deformation. The interaction between atoms is described with the use of a potential calculated by the embedded atom method. Shock waves are created by assigning a velocity exceeding the speed of sound in the simulated material to the boundary atoms of the computational cell. It is shown that two regions of increased mechanical stress are formed under shear deformation near the surface of a nanovoid, which are the sources of emerging partial dislocations. The main mechanism for the formation of dislocations is the displacement of a group of atoms towards the inner surface of the void, which does not contradict modern ideas about the heterogeneous formation of dislocations. It is shown that, when the values of shear stress are insufficient for the formation of dislocations, loop emission can be initiated by a post-cascade shock wave generated in the computational cell. As temperature increases, the number of nucleated dislocation loops increases, and, in addition, the formation of Lomer–Cottrell dislocations is observed, which is attributed to the additional tangential stresses created by the unloading wave. In this case, the formation of a stable dislocation loop in which the linear tension is balanced by the Peach–Koehler force due to external stress requires that the shock wave front affect the regions of increased stress near the void surface while propagating through the simulated crystal.  相似文献   

10.
The behavior of compound dislocations under stress loading is considered. Dislocation configurations are onsidered for an arbitrary asymmetric intersection of reacting dislocation segments. It is demonstrated that depending on the character of dislocation segment intersection, compound dislocations of two types can be formed, one of which is destructed under increasing stress loading. In the other case, the length of the compound dislocation increases, thereby causing the formation of long extended barriers. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 25–30, March, 2009.  相似文献   

11.
A new mechanism of irradiation creep is proposed, which is based on the radiation and stress induced difference in emission (RSIDE) of vacancies from dislocations of different orientations with respect to the external stress. This phenomenon is due to the difference in vacancy formation energies, which is proportional to the external stress. The proposed model exhibits similarities with thermal creep models and it is distinct from stress-induced preferential absorption (SIPA) models based on the difference in the long-range interaction of point defects with dislocations. The RSIDE creep rate is essentially temperature independent and is proportional to the dislocation density, stress and irradiation flux. It is inversely proportional to the square of the vacancy formation energy, which is lower than the Frenkel pair formation energy. Experimental verification of the proposed model is discussed on the basis of the measurements of vacancy concentration and creep rate under sub-threshold electron irradiation.  相似文献   

12.
Moving dislocations in II–VI semiconductors carry a large electric charge. This charge is not in thermal equilibrium, but is due to the sweeping up of electrons from point defects. Its movement produces a dislocation current during plastic deformation, and conversely, the application of an external field changes the flow stress. This paper reviews the structure and properties of these dislocations, the theory of their charge and the phenomena which are a consequence of the strong mutual interactions of the dislocation and electronic sub-systems in these crystals. The materials show a large photoplastic effect (a change in flow stress under illumination), and related effects due to the injection of electrons at an electrode. Deformation produces reversible changes in the conductivity, pulsed and continuous luminescence and the emission of electrons from the surface.  相似文献   

13.
A.R. Massih 《哲学杂志》2013,93(33):3075-3086
We treat the problem of diffusion of solute atoms around screw dislocations. In particular, we express and solve the diffusion equation in two dimensions with radial symmetry in an elastic field of a screw dislocation subject to conservation of flux at the interface of a new phase. We consider an incoherent second-phase precipitate growing under the action of the stress field of a screw dislocation. The second-phase growth rate as a function of the supersaturation and a strain energy parameter is evaluated in spatial dimensions d = 2. Our calculations show that an increase in the amplitude of the dislocation force, e.g. the magnitude of the Burgers vector, enhances the second-phase growth in an alloy. Moreover, we calculate the reduction in concentration of solute atoms as a function of radius around a second phase which grows cylindrically (in the radial direction) so that its radius varies as the square root of time for various levels of the dislocation force amplitude.  相似文献   

14.
郭怀民  赵国忠 《计算物理》2020,37(2):198-204
根据本征方程,研究磁电弹性体中若干平行螺型位错与Griffith裂纹的相互作用.结合Muskhelishvili方法和算子理论,得到磁电弹性体中由位错和裂纹所诱导的应力场、电场和磁场的解析解.数值算例表明:在裂纹的端点及位错点上仍然存在应力的奇异性,离位错点越远处广义力越小,结论与已有的结果相符,证明了结论的正确性.当位错点与裂纹端点距离越近时,裂纹与位错间的应力场越小,并逐渐趋近于零.  相似文献   

15.
We report a method to incorporate dislocation climb controlled by bulk diffusion in a three-dimensional discrete dislocation dynamics (DDD) simulation for fcc metals. In this model we couple the vacancy diffusion theory to the DDD in order to obtain the climb rate of the dislocation segments. The capability of the model to reproduce the motion of climbing dislocations is examined by calculating several test-cases of pure climb-related phenomena and comparing the results with existing analytical predictions and experimental observations. As test-cases, the DDD is used to study the activation of Bardeen–Herring sources upon the application of an external stress or under vacancy supersaturation. Loop shrinkage and expansion due to vacancy emission or absorption is shown to be well described by our model. In particular, the model naturally describes the coarsening of a population of loops having different sizes.  相似文献   

16.
The influence of intermolecular interaction between point defects, which are moving pinning points for dislocations, on the length distribution of dislocation segments is discussed. The distribution function is analyzed by Monte Carlo numerical modeling. It is shown that a length distribution can be described in the absence of external stresses by an exponential function that may differ from the Köhler function at high defect concentrations. Intermolecular interaction of defects changes the distribution function, which, with time, also becomes nearly exponential, but with different values of the parameters.  相似文献   

17.
单向拉伸作用下Cu(100)扭转晶界塑性行为研究   总被引:1,自引:0,他引:1       下载免费PDF全文
应用分子动力学方法研究了在不同扭转角度下的Cu(100)失配晶界位错结构,以及不同位错结构对晶界强度的影响.模拟结果表明:小角度扭转晶界上将形成失配位错网,失配位错密度随着晶粒之间的失配扭转角度的增加而增加.变形过程中,位错网每个单元中均产生位错形核扩展.位错之间的塞积作用影响晶界的屈服强度:随着位错网格密度的增加,位错之间的塞积作用增强,界面的屈服强度得到提高.大角度扭转晶界将形成面缺陷,在变形中位错由晶界角点处形核扩展,此时由于面缺陷位错开动应力趋于一致,因此晶界的临界屈服强度趋于定值. 关键词: 扭转晶界 失配位错网 强化机理 分子动力学  相似文献   

18.
The classical molecular dynamics method is employed to simulate the interaction of edge dislocations with interstitial Frank loops (2 and 5 nm in diameter) in the Fe-Ni10-Cr20 model alloy at the temperatures T = 300–900 K. The examined Frank loops are typical extended radiation-induced defects in austenitic steels adapted to nuclear reactors, while the chosen triple alloy (Fe-Ni10-Cr20) has the alloying element concentration maximally resembling these steels. The dislocation-defect interaction mechanisms are ascertained and classified, and their comparison with the previously published data concerning screw dislocations is carried out. The detachment stress needed for a dislocation to overcome the defect acting as an obstacle is calculated depending on the material temperature, defect size, and interaction geometry. It is revealed that edge dislocations more efficiently absorb small loops than screw ones. It is demonstrated that, in the case of small loops, the number of reactions accompanied by loop absorption increases with temperature upon interaction with both edge and screw dislocations. It is established that Frank loops are stronger obstacles to the movement of screw dislocations than to the movement of edge ones.  相似文献   

19.
葛庭燧  王中光  黄元士 《物理学报》1965,21(6):1242-1252
为了进一步研究在疲劳载荷下含铜4%的铝合金中的位错钉扎过程,进行了经过不同时效的试样的扭转疲劳试验,测定了经过各种应力循环数N以后的滞后迴线的形状和面积,从而算出了在每次循环中的能量消耗ΔE和最大抗扭矩Tm。所选择的时效温度和时效时间是使试样中分别有G.P.[1]区,G.P.[2]区,θ′相和稳定的θ相出现。把所得的ΔE-N曲线和Tm-N曲线的变化情况作比较时可以看出,在疲劳载荷的起始阶段引起位错钉扎的并不是由于相变产物如G.P.[1]或[2]区的作用。比较并分析了在各种时效状态下的第一周能量消耗值(ΔE)1的变化,结果指出,在所研究的铝铜合金的情形,产生ΔE的原因是由于在位错附近的点阵中有起伏的内应力场出现,因为位错在这种内应力场中往复运动需要作功。产生这种起伏的应力场的因素有点缺陷(空位和溶质原子)、原子簇、G.P.[1]区和G.P.[2]区,或者其他种不在位错线上聚集或成核的缺陷。根据上述分析,可以认为,在疲劳载荷中,使位错钉扎的是由于溶质原子气团的形成。溶质原子在疲劳过程中通过空位的帮助进入位错,形成气团,使位错被钉扎。被钉扎的位错的动性减低,因而ΔE下降。在时效过程中,在位错线上成核的θ′和θ相,对于位错线也起着一定的钉扎作用。由上述的图象还可以推知,G.P.[1]区和G.P.[2]区不是在位错线上成核的,而θ′相和θ相则是在位错线上成核的。  相似文献   

20.
Hao Xiang 《中国物理 B》2022,31(8):86104-086104
The core structure, Peierls stress and core energy, etc. are comprehensively investigated for the $90^\circ$ dislocation and the $60^\circ$ dislocation in metal aluminum using the fully discrete Peierls model, and in particular thermal effects are included for temperature range $0\leq T \leq 900$ K. For the $90^\circ$ dislocation, the core clearly dissociates into two partial dislocations with the separating distance $D\sim 12$ Å, and the Peierls stress is very small $\sigma_{\rm p}<1$ kPa. The nearly vanishing Peierls stress results from the large characteristic width and a small step length of the $90^\circ$ dislocation. The $60^\circ$ dislocation dissociates into $30^\circ$ and $90^\circ$ partial dislocations with the separating distance $D\sim 11$ Å. The Peierls stress of the $60^\circ$ dislocation grows up from $1$ MPa to $2$ MPa as the temperature increases from $0$ K to $900$ K. Temperature influence on the core structures is weak for both the $90^\circ$ dislocation and the $60^\circ$ dislocation. The core structures theoretically predicted at $T=0$ K are also confirmed by the first principle simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号